DUAL ABELIAN VARIETY IN CHARACTERISTIC 0

TIM KUPPEL

ABSTRACT. The aim of this talk is to construct the dual abelian variety in characteristic 0, which is a moduli space for translation invariant line bundles which we will therefore investigate. Moreover, we will see a few properties of duality, and in particular that Jacobians of curves are selfdual via the Θ -divisor coming from the Abel-Jacobi map in degree q - 1.

Throughout this talk k is an algebraically closed field, A/k an abelian variety over k and C/k a smooth proper curve of genus g > 0. The assumption of characteristic 0 is only used in section 2.

In sections 1 and 2 we follow [Mum70], in section 3 [GMss] and in section 4 [Mil86b].

1. Pic^0 of an abelian variety

Definition 1.1. For a line bundle $\mathscr{L} \in \operatorname{Pic}(A)$ we consider

$$\phi_{\mathscr{L}}: A(k) \to \operatorname{Pic}(A), a \mapsto t_a^* \mathscr{L} \otimes \mathscr{L}^{-1},$$

and define $\operatorname{Pic}^{0}(A) \coloneqq \{\mathscr{L} \in \operatorname{Pic}(A) : \phi_{\mathscr{L}} = 0\}.$

Recall that the theorem of the square asserts $t_{a+b}^* \mathscr{L} \otimes \mathscr{L} \cong t_a^* \mathscr{L} \otimes t_b^* \mathscr{L}$ for $\mathscr{L} \in \operatorname{Pic}(A)$ and $a, b \in A(k)$. Thus, $\phi_{\mathscr{L}}$ is a group homomorphism, and the image of $\phi_{\mathscr{L}}$ is contained in $\operatorname{Pic}^{0}(A)$. In particular, $\operatorname{Pic}^{0}(A) \subset \operatorname{Pic}(A)$ is a subgroup.

As we want to construct an abelian variety parametrizing $\operatorname{Pic}^{0}(A)$, we have to further investigate these line bundles. The following shows that Pic⁰ is sensible notation, and that for an elliptic curve the moduli space we wish to construct is just the elliptic curve itself.

Lemma 1.2. Let E/k be an elliptic curve with distinguished point $e \in E(k)$. Then

$$\operatorname{Pic}^{0}(E) = \{ \mathscr{L} \in \operatorname{Pic}(A) : \operatorname{deg}(\mathscr{L}) = 0 \}.$$

Proof. For $x \in E(k)$ with $nx \neq e$ (recall that abelian varieties are divisible) we have

$$n\phi_{\mathscr{O}(e)}(-x) = \mathscr{O}(n[x] - n[e]) = \mathscr{O}(([nx] + (n-1)[e]) - n[e]) = \mathscr{O}([nx] - [e])$$

by the theorem of the square. But $\mathscr{O}([nx] - [e])$ is non-trivial as else $E \cong \mathbb{P}^1$ (see sheet 8, exercise 2 of our algebraic geometry II class). Now let $\mathscr{L} \in \operatorname{Pic}^{0}(A), \ \mathscr{L} \cong \mathscr{O}(D)$ for a divisor $D = \sum_{x \in E(k)} n_{x}[x]$. Note that $\phi : \operatorname{Pic}(A) \to \operatorname{Hom}_{\operatorname{Grp}}(A(k), \operatorname{Pic}^{0}(A)), \mathscr{L} \mapsto \phi_{\mathscr{L}} \text{ is a group homomorphism, and } \phi_{\mathscr{L}} = \phi_{t_{a}^{*}\mathscr{L}} \text{ for all } a \in E(k) \text{ by}$ the theorem of the square. Therefore, $\phi_{\mathscr{L}} = \deg(\mathscr{L})\phi_{\mathscr{O}(e)}$, which by the above is 0 if and only if $\deg(\mathscr{L}) = 0$. \Box

We can also express $\mathscr{L} \in \operatorname{Pic}^{0}(A)$ by triviality of a certain line bundle. To this end recall the following, which we saw in talk 11.

Proposition 1.3 ([Mil86a, Thm. 5.3]). Let V/k be a proper variety and T/k a scheme of finite type, \mathcal{L} a line bundle on $V \times T$. Then

$$\{t \in T : \mathscr{L}|_{V \times \{t\}} \text{ trivial}\}$$

is closed.

Moreover, we recall the seesaw principle.

Theorem 1.4 (Seesaw principle, [Mil86a, Cor. 5.2]). Let V/k be a proper variety and T/k an integral scheme of finite type over k. Moreover, let $\mathscr{L}, \mathscr{L}'$ be line bundles on $V \times T$. If $\mathscr{L}|_{V \times \{t\}} \cong \mathscr{L}'|_{V \times \{t\}}$ for all $t \in T(k)$ and $\mathscr{L}|_{\{v\}\times T} \cong \mathscr{L}'|_{\{v\}\times T}$ for some $v \in V(k)$, then $\mathscr{L} \cong \mathscr{L}'$.

Lemma 1.5. Let $\mathscr{L} \in \operatorname{Pic}(A)$. The following hold.

(i) $\mathscr{L} \in \operatorname{Pic}^{0}(A)$ if and only if $m^{*}\mathscr{L} \cong p_{1}^{*}\mathscr{L} \otimes p_{2}^{*}\mathscr{L}$ on $A \times A$.

- (ii) For morphisms $f, g: S \to A$ of schemes and $\mathscr{L} \in \operatorname{Pic}^{0}(A)$ we have $(f+g)^{*}\mathscr{L} \cong f^{*}\mathscr{L} \otimes g^{*}\mathscr{L}$. In particular, $n_A^* \mathscr{L} \cong \mathscr{L}^n.$
- (iii) If \mathscr{L} is of finite order, then $\mathscr{L} \in \operatorname{Pic}^{0}(A)$. (iv) We have $n_{A}^{*}\mathscr{L} \cong \mathscr{L}^{n^{2}} \otimes \mathscr{M}$ for some $\mathscr{M} \in \operatorname{Pic}^{0}(A)$.

Proof. By the seesaw principle 1.4 $\mathscr{M} \coloneqq m^* \mathscr{L} \otimes p_1^* \mathscr{L}^{-1} \otimes p_2^* \mathscr{L}^{-1}$ is trivial if and only if $\mathscr{M}|_{\{0\} \times A} \cong \mathscr{O}_A$ is trivial and for all $a \in A(k)$

$$\mathscr{M}\big|_{A\times\{a\}}\cong t_a^*\mathscr{L}\otimes\mathscr{L}^{-1}$$

is trivial. This yields (i).

For (ii) simply pull back this isomorphism along $(f,g): S \to A \times A$ to obtain

$$(f+g)^*\mathscr{L} = (f,g)^*m^*\mathscr{L} = (f,g)^*(p_1^*\mathscr{L} \otimes p_2^*\mathscr{L}) = f^*\mathscr{L} \otimes g^*\mathscr{L}.$$

For (iii) note $\phi_{\mathscr{L}}(na) = n\phi_{\mathscr{L}}(a)$ for $a \in A(k)$ and use that abelian varieties are divisible. It remains to show (iv). We already know

$$n_A^* \mathscr{L} \cong \mathscr{L}^{(n^2+n)/2} \otimes (-1)^* L^{(n^2-n)/2} = \mathscr{L}^{n^2} \otimes (\mathscr{L} \otimes (-1)^* \mathscr{L}^{-1})^{(n-n^2)/2},$$

so it suffices to show $\mathscr{L} \otimes (-1)^* \mathscr{L}^{-1} \in \operatorname{Pic}^0(A)$. For $a \in A(k)$

$$t_a^*(\mathscr{L} \otimes (-1)^* \mathscr{L}^{-1}) = t_a^* \mathscr{L} \otimes (-1)^* (\mathscr{L} \otimes t_{-a}^* \mathscr{L}^{-1}) \otimes (-1)^* \mathscr{L}^{-1}.$$

By 1.5 $(-1)^*(\mathscr{L} \otimes t_{-a}^*\mathscr{L}^{-1}) = \mathscr{L}^{-1} \otimes t_{-a}^*\mathscr{L}$, whence by the theorem of the square

$$t_a^*(\mathscr{L}\otimes (-1)^*\mathscr{L}) = t_a^*\mathscr{L}\otimes \mathscr{L}^{-1}\otimes t_{-a}^*\mathscr{L}\otimes (-1)^*\mathscr{L}^{-1} = \mathscr{L}\otimes (-1)^*\mathscr{L}^{-1}$$

as required.

Lemma 1.6. Let $\mathscr{L} \in \operatorname{Pic}(A)$. Then $n_A^*\mathscr{L} \cong \mathscr{L}^{n^2} \otimes \mathscr{M}$ for some $\mathscr{M} \in \operatorname{Pic}^0(A)$. *Proof.* We already know

$$n_A^*\mathscr{L} \cong \mathscr{L}^{(n^2+n)/2} \otimes (-1)^* L^{(n^2-n)/2} = \mathscr{L}^{n^2} \otimes (\mathscr{L} \otimes (-1)^* \mathscr{L}^{-1})^{(n-n^2)/2}$$

so it suffices to show $\mathscr{L} \otimes (-1)^* \mathscr{L}^{-1} \in \operatorname{Pic}^0(A)$. For $a \in A(k)$

$$t^*_a(\mathscr{L}\otimes (-1)^*\mathscr{L}^{-1}) = t^*_a\mathscr{L}\otimes (-1)^*(\mathscr{L}\otimes t^*_{-a}\mathscr{L}^{-1})\otimes (-1)^*\mathscr{L}^{-1}.$$

By 1.5 $(-1)^*(\mathscr{L} \otimes t^*_{-a}\mathscr{L}^{-1}) = \mathscr{L}^{-1} \otimes t^*_{-a}\mathscr{L}$, whence by the theorem of the square $t^*_*(\mathscr{L} \otimes (-1)^*\mathscr{L}) = t^*_*\mathscr{L} \otimes \mathscr{L}^{-1} \otimes t^*_* \mathscr{L} \otimes (-1)^*\mathscr{L}^{-1} = \mathscr{L} \otimes (-1)^*\mathscr{L}^{-1}$

$$t_a^*(\mathscr{L}\otimes (-1)^*\mathscr{L}) = t_a^*\mathscr{L}\otimes \mathscr{L}^{-1}\otimes t_{-a}^*\mathscr{L}\otimes (-1)^*\mathscr{L}^{-1} = \mathscr{L}\otimes (-1)^*\mathscr{L}^{-1},$$

as required.

Note that the following shows that for a family of line bundles on A parametrized by a variety it suffices to see that one of them lies in $\operatorname{Pic}^{0}(A)$ in order to see that it is a family of translation invariant line bundles.

Proposition 1.7. Let S be a variety and \mathscr{L} a line bundle on $A \times S$. Then for all $s_0, s_1 \in S(k)$

$$\mathscr{L}_{s_0} \otimes \mathscr{L}_{s_1}^{-1} \in \operatorname{Pic}^0(A),$$

where $\mathscr{L}_s = \mathscr{L}|_{A \times \{s\}} \in \operatorname{Pic}(A_{k(s)})$ for $s \in S$.

Proof. Note that $p_2^*(\mathscr{L}^{-1}|_{\{0\}\times S})_s$ is trivial for all $s \in S(k)$, so by replacing \mathscr{L} with $\mathscr{L} \otimes p_2^*(\mathscr{L}^{-1}|_{\{0\}\times S})$ we may assume that $\mathscr{L}|_{\{0\}\times S}$ is trivial. Moreover, by replacing \mathscr{L} with $\mathscr{L} \otimes p_1^*\mathscr{L}_{s_0}^{-1}$ we may assume that \mathscr{L}_{s_0} is trivial. We show that

$$\mathscr{M} \coloneqq (m \times \mathrm{id})^* \mathscr{L} \otimes p_{13}^* \mathscr{L}^{-1} \otimes p_{23}^* \mathscr{L}^{-1} \text{ on } A \times A \times S$$

is trivial. Since $\mathcal{M}_s = m^* \mathcal{L}_s \otimes p_1^* \mathcal{L}_s^{-1} \otimes p_2^* L_s^{-1}$ for $s \in S(k)$ on $X \times X$ this suffices by 1.5. By commutativity of

and triviality of $\mathscr{L}|_{\{0\}\times S}$ we have that $(p_{23}^*\mathscr{L}^{-1})|_{A\times\{0\}\times S}$ is trivial. This yields

$$\mathscr{M}\big|_{A\times\{0\}\times S}=\mathscr{L}\otimes\mathscr{L}^{-1}$$

triviality of $\mathscr{M}|_{\{0\}\times A\times S}$ follows similarly. Moreover,

$$\mathscr{M}\big|_{A\times A\times\{s_0\}} = m^*\mathscr{L}_{s_0}\otimes p_1^*\mathscr{L}_{s_0}^{-1}\otimes p_2^*\mathscr{L}_{s_0}^{-1}$$

is trivial by triviality of \mathscr{L}_{s_0} . The theorem of the cube yields the claim (talk 11).

Proposition 1.8. Let $\mathscr{L} \in \operatorname{Pic}^{0}(A)$ be non-trivial. Then $H^{k}(A, \mathscr{L}) = 0$ for all k.

Proof. We proceed by induction on k. Suppose $H^0(A, \mathscr{L}) \neq 0$. Thus, since $\mathscr{L} \in \operatorname{Pic}^0(A)$,

$$\mathscr{L}^{-1} = (-1)^* \mathscr{L}$$

As multiplication by -1 is an automorphism, \mathscr{L}^{-1} has global sections as well. But then $\mathscr{L} \cong \mathscr{O}_A$ since non-zero global sections $s \in H^0(A, \mathscr{L})$ and $s' \in H^0(A, \mathscr{L}^{-1})$ give morphisms $s : \mathscr{O}_A \to \mathscr{L}, s' : \mathscr{O}_A \to \mathscr{L}^{-1}$. Then

 $s'^{\vee} \circ s : \mathscr{L} \to \mathscr{L}$ is non-zero and thus an isomorphism by $H^0(A, \mathscr{O}_A) = k$. But then $s : \mathscr{O}_A \to \mathscr{L}$ is already an isomorphism.

Now assume $H^i(A, \mathscr{L}) = 0$ for i < k and some k > 0. Let $s : A \to A \times A, a \mapsto (a, 0)$. As $m \times s = \mathrm{id}_A$, $\mathrm{id} : H^k(A, \mathscr{L}) \to H^k(A, \mathscr{L})$ factors as

$$H^{k}(A,\mathscr{L}) \xrightarrow{m^{*}} H^{k}(A \times A, m^{*}\mathscr{L}) \xrightarrow{s^{*}} H^{k}(A, \mathscr{L}).$$

But $m^*\mathscr{L} = p_1^*\mathscr{L} \otimes p_2^*\mathscr{L}$ by 1.5, so Künneth yields

$$H^{k}(A \times A, m^{*}\mathscr{L}) = \sum_{i+j=k} H^{i}(A, \mathscr{L}) \otimes H^{j}(A, \mathscr{L}) = 0$$

We conclude $H^k(A, \mathscr{L}) = 0$.

The following is our main theorem, which asserts that the k-points of the abelian variety we wish to construct should be $A(k)/K(\mathscr{L})$ for ample \mathscr{L} , where $K(\mathscr{L}) = \{a \in A(k) : \phi_{\mathscr{L}}(a)\} = 0$. Recall from talk 11 that in this case $K(\mathscr{L})$ is finite. We need the following two results which are very similar to results we saw in talk 8.

Lemma 1.9 (Grauert, [Mum70, II.5, Cor. 2]). Let $f : X \to Y$ be a proper morphism of Noetherian schemes with Y reduced and connected, and let \mathscr{F} be a coherent sheaf on X which is flat over Y. Then, if $y \in Y \mapsto \dim_{k(y)} H^p(X_y, \mathscr{F}_y)$ is constant, $R^{p-1}f_*\mathscr{F} \otimes_{\mathscr{O}_Y} k(y) \cong H^{p-1}(X_y, \mathscr{F}_y)$ for all $y \in Y$.

With this, one also has the following.

Corollary 1.10 (Grauert, [Mum70, II.5, Cor. 4]). In the situation of 1.9 if $R^k f_* \mathscr{F} = 0$ for $k \ge k_0$, then $H^k(X_y, \mathscr{F}_y) = 0$ for all $y \in Y$ and $k \ge k_0$.

 $\phi_{\mathscr{L}}: A(k) \to \operatorname{Pic}^{0}(A)$

From now on fix an ample $\mathscr{L} \in \operatorname{Pic}(A)$.

Theorem 1.11. The group morphism

is surjective.

Proof. Let $\mathscr{M} \in \operatorname{Pic}^{0}(A)$ and assume $t_{a}^{*}\mathscr{L} \otimes \mathscr{L}^{-1} \not\cong \mathscr{M}$ for all $a \in A(k)$. On $A \times A$ consider the line bundle $\mathscr{K} \coloneqq m^{*}\mathscr{L} \otimes p_{1}^{*}\mathscr{L}^{-1} \otimes p_{2}^{*}(\mathscr{L}^{-1} \otimes \mathscr{M}^{-1}).$

Note that for $a \in A(k)$

$$\mathscr{K}\big|_{\{a\}\times A}\cong t_a^*\mathscr{L}\otimes \mathscr{L}^{-1}\otimes \mathscr{M}^{-1},$$

which lies in $\operatorname{Pic}^{0}(A)$ and by assumption is non-trivial. Thus, by 1.8 $H^{i}(A, \mathscr{K}|_{\{a\}\times A}) = 0$ for all *i*, and Grauert's lemma 1.9 (together with Nakayama) yields $R^{i}p_{1,*}\mathscr{K} = 0$. We deduce

$$R\Gamma(A, Rp_{1,*}\mathscr{K}) = R\Gamma(A \times A, \mathscr{K}) = 0.$$

Moreover, $t_a^* \mathscr{L} \otimes \mathscr{L}^{-1} \cong \mathscr{K}|_{A \times \{a\}}$ is non-trivial for $a \in A(k) \setminus K(L)$ and K(L) is closed, whence as above by 1.9 $\operatorname{supp}(R^i p_{2,*} \mathscr{K}) \subset K(\mathscr{L})$ (for this, note that the above implies that the higher direct image sheaves are 0 if we restrict to $p_2^{-1}(A \setminus K(\mathscr{L}))$ and use that restriction is exact). But $K(\mathscr{L})$ is finite, so

$$Rp_{2,*}\mathscr{K} \cong \iota_*\iota^{-1}Rp_{2,*}\mathscr{K}$$

and $\iota_* = R\iota_*$ as well as $R\Gamma(K(\mathscr{L}), -) = \Gamma(K(\mathscr{L}), -)$, where $\iota: K(\mathscr{L}) \to A$. Therefore,

$$0 = R\Gamma(A, Rp_{2,*}\mathscr{K}) = R\Gamma(K(\mathscr{L}), \iota^{-1}Rp_{2,*}) = \Gamma((K(\mathscr{L}), \iota^{-1}Rp_{2,*}) = \bigoplus_{x \in K(\mathscr{L})} (Rp_{2,*})_x.$$

We deduce $Rp_{2,*}\mathscr{K} = 0$, and 1.10 yields $H^i(A, \mathscr{K}|_{A \times \{a\}}) = 0$ for all $a \in A$. But $\mathscr{K}|_{A \times \{0\}}$ is trivial, and thus has global sections; a contradiction.

2. The dual abelian variety in characteristic 0

Theorem 1.11 suggests that our moduli space of Pic^0 on k-points should be $A(k)/K(\mathscr{L})$. As we hope for an abelian variety, $K(\mathscr{L})$ ought to be the k-points of a closed group subscheme of A. But in characteristic 0 group schemes are smooth by a theorem of Cartier [Sta22, Tag 047N], in particular reduced, and we have our natural candidate: $K(\mathscr{L})$ with its reduced subscheme structure.

We remark that in arbitrary characteristic this does not work, but one has to see that there is a closed group subscheme $K(\mathscr{L})$ with functor of points $K(\mathscr{L})(S) = \{a \in A(S) : t_a^* \mathscr{L}_S \cong \mathscr{L}_S \text{ on } X \times S\}.$

Definition 2.1. An abelian variety A^{\vee} together with a line bundle \mathscr{P} on $A \times A^{\vee}$ called *Poincaré bundle* is the *dual abelian variety of* A if

(1)
$$\mathscr{P}|_{\{0\}\times A^{\vee}} \cong \mathscr{O}_{A^{\vee}} \text{ and } \mathscr{P}|_{A\times\{a\}} \in \operatorname{Pic}^{0}(A_{k(A)}) \text{ for all } a \in A^{\vee}, \text{ and}$$

(2) for all schemes T/k and line bundles \mathscr{M} on $A \times T$ with $\mathscr{M}|_{\{0\} \times T} \cong \mathscr{O}_T$ and $\mathscr{M}_{A \times \{t\}} \in \operatorname{Pic}^0(A_{k(t)})$ for all $t \in T$ there is a unique morphism $f: T \to A^{\vee}$ s.t. $(1 \times f)^* \mathscr{P} \cong \mathscr{M}$.

In other words, A^{\vee} is an abelian variety representing the functor

$$(\mathrm{Sch}/k)^{\mathrm{opp}} \mapsto \mathrm{Sets}, T \mapsto \{\mathscr{M} \in \mathrm{Pic}(A \times T) : \mathscr{M}|_{\{0\} \times T} \cong \mathscr{O}_T, \ \mathscr{M}|_{A \times \{t\}} \in \mathrm{Pic}^0(A_{k(t)}) \text{ for all } t \in T\}$$

Note that for an elliptic curve E/k this functor is simply $\operatorname{Pic}_{E/k,0}^{0}$.

As noted above in characteristic 0 we already have a candidate for A^{\vee} , and it remains to to construct the Poincaré bundle. For the rest of this section assume $\operatorname{char}(k) = 0$ and put $A^{\vee} := A/K(\mathscr{L})$, where $K(\mathscr{L})$ has the reduced subscheme structure.

In order to obtain the Poincaré bundle we use descent of line bundles as discussed in talk 13.

Theorem 2.2. Let G be a finite group scheme acting freely on A, i.e., $G \times A \to A \times A$, $(g, a) \mapsto (g.a, a)$ is a closed immersion. Denote the natural map $X \to X/G$ by π . Then

$$\operatorname{QCoh}(X/G) \to \{\mathscr{F} \in \operatorname{QCoh}(X) \ G - \operatorname{equivariant}\}, \mathscr{F} \mapsto \pi^* \mathscr{F}$$

is an equivalence of categories under which locally free sheaves of some rank correspond to locally free sheaves of the same rank.

Recall that a G-equivariant sheaf on A is simply a sheaf \mathscr{F} on A together with isomorphisms $\lambda_g : g^* \mathscr{F} \to \mathscr{F}$ for all $g \in G$ s.t. for all $g, h \in G$

commutes.

We want $\pi = \phi_{\mathscr{L}}$, which thus has to correspond to $\Lambda \coloneqq m^* \mathscr{L} \otimes p_1^* \mathscr{L} \otimes p_2^* \mathscr{L}^{-1}$ as $\Lambda|_{\{a\} \times A} = t_a^* \mathscr{L} \otimes \mathscr{L}^{-1}$ for all $a \in A(k)$. Hence, we have to give Λ on $A \times A$ a $\{0\} \times K(\mathscr{L})$ -equivariant structure in order to obtain a line bundle \mathscr{P} on $A \times A^{\vee} = (A \times A)/(\{0\} \times K(\mathscr{L}))$ with $\pi^* \mathscr{P} = \Lambda$.

Lemma 2.3. There exists an $\{0\} \times K(\mathcal{L})$ -equivariant structure on Λ .

Proof. First, note that

$$t^*_{(0,a)}\Lambda = t^*_{(0,a)}\Lambda \cong m^* t^*_a \mathscr{L} \otimes p_1^* \mathscr{L}^{-1} \otimes p_2^* t^*_a \mathscr{L}^{-1} \cong \Lambda$$

for all $a \in K(\mathscr{L})$. Thus, isomorphisms $\lambda_a : t^*_{(0,a)} \Lambda \cong \Lambda$ for $a \in K(\mathscr{L})$ exist, but we need

(1)
$$t^*_{(0,a+b)}\Lambda \xrightarrow{\lambda_{a+b}} \Lambda \xrightarrow{\lambda_{a+b}} \Lambda$$
$$t^*_{(0,a)}\lambda_h \xrightarrow{t^*_{(0,a)}\Lambda} \lambda_a$$

to commute for $a, b \in K(\mathscr{L})$. Fix an isomorphism $\Lambda|_{\{0\}\times A} \cong \mathscr{O}_A$. As res : $k^{\times} = H^0(A \times A, \mathscr{O}_{A\times A}^{\times}) \xrightarrow{\sim} H^0(\{0\} \times A, \mathscr{O}_{\{0\}\times A}^{\times}) = k^{\times}$, we can simply require the λ_a to be the unique isomorphisms $t^*_{(0,a)}\Lambda \xrightarrow{\sim} \Lambda$ which after restriction to $\{0\} \times A$ are

$$t_a^*: t_a^* \mathscr{O}_A \cong t_a^* \mathscr{L}\big|_{\{0\} \times A} = (t_{(0,a)}^* \mathscr{L})\big|_{\{0\} \times A} \xrightarrow{\sim} \mathscr{L}\big|_{\{0\} \times A} \cong \mathscr{O}_A.$$

Since $t_a \circ t_b = t_{a+b}$ the commutativity of 1 after restriction to $\{0\} \times A$ is clear, and we obtain a line bundle \mathscr{P} on $A \times A^{\vee}$ with $\pi^* \mathscr{P} \cong \Lambda$.

Theorem 2.4. The dual abelian variety of A is A^{\vee} and \mathscr{P} is the Poincaré bundle.

Proof. We outline the proof only for normal varieties S/k, for the general case including arbitrary characteristic see [Mum70, III.13].

Let \mathscr{M} be a line bundle on $A \times S$ s.t. $\mathscr{M}|_{\{0\} \times S}$ is trivial and $\mathscr{M}|_{A \times \{s\}} \in \operatorname{Pic}^{0}(A_{k(s)})$ for all $s \in S$. On $A \times S \times A^{\vee}$ consider

$$\mathscr{F} \coloneqq p_{12}^* \mathscr{M} \otimes p_{13}^* \mathscr{P}^{-1}.$$

Note that

$$\mathscr{F}\big|_{A\times\{(s,b)\}}\cong\mathscr{M}_s\otimes\mathscr{P}_b^{-1}$$

for $s \in S(k), b \in A^{\vee}$. Moreover, consider

$$\Gamma := \{ (s,b) \in S \times A^{\vee} : \mathscr{F} \big|_{A \times \{ (s,b) \}} \text{ trivial} \},\$$

which is closed in $S \times A^{\vee}$ by 1.4 (of course we equip Γ with its reduced subscheme structure). For $(s, b) \in \Gamma(k)$ we have $\mathcal{M}_s \cong \mathcal{P}_b$. By construction of A^{\vee} we have $A^{\vee}(k) = A(k)/K(\mathcal{L})$, so for every $s \in S(k)$ there is a unique $b \in A^{\vee}(k)$ with $\mathscr{M}_s \cong \mathscr{P}_b$. Note that this in particular implies that the morphism f we will obtain is unique with $(1 \times f)^* \mathscr{P} \cong \mathscr{M}$. We conclude that on k-points the projection

$$p_1: \Gamma \to S, (s, b) \mapsto s$$

is a bijection. Therefore, $k(A^{\vee})/k(\Gamma)$ is a field extension of separable degree 1, and by $\operatorname{char}(k) = 0$ we even get $A^{\vee}(k) = \Gamma(k)$ [Sha13, p. 142, Thm. 2.29]. The following theorem shows that $p_1 : \Gamma \to S$ is even an isomorphism, and $f : S \cong \Gamma \xrightarrow{p_2} A^{\vee}$ fulfils $\mathscr{M} \cong (1 \times f) \mathscr{P}$ by the seesaw principle 1.4 as both

$$\mathscr{M}\big|_{\{0\}\times S}\cong \mathscr{O}_s\cong f^*(\mathscr{P}\big|_{\{0\}\times A^\vee})\cong ((1\times f)^*\mathscr{P})\big|_{\{0\}\times S}$$

by triviality of $\mathscr{P}|_{\{0\}\times A^{\vee}}$ and and for all $s\in S(k)$

$$\mathscr{M}_s \cong \mathscr{P}_{f(s)} \cong ((1 \times f)^* \mathscr{P})\big|_{A \times \{f(s)\}}.$$

Theorem 2.5 (Zariski's main theorem, [Liu02, 4, Cor. 4.6]). Let $f : X \to S$ be a quasi-finite and birational morphism of varieties with S normal. Then f is an open immersion.

3. Dual morphisms

We now show that duality of abelian varieties is a "good" duality in the sense that $A \cong A^{\vee\vee}$. For this, we need Cartier duals, which are the scheme version of character groups.

Theorem 3.1 ([Mum70, III.14]). Let G/k be a finite group scheme. Then there is a finite group scheme G^D of the same rank as G which represents

 $(\operatorname{Sch}/k)^{\operatorname{opp}} \mapsto \operatorname{Sets}, T \mapsto \operatorname{Hom}_{\operatorname{GrpSch}/T}(G \times T, \mathbb{G}_m \times T).$

With these, the following important theorem holds.

Theorem 3.2 ([Mum70, III.15, Thm. 1]). Let $f : A \to B$ be an isogeny. Then $f^{\vee} : B^{\vee} \to A^{\vee}$ is an isogeny and naturally $\ker(f^{\vee}) \cong \ker(f)^D$.

Note that this is just the scheme version of the duality between $\ker(f^* : \operatorname{Pic}(B) \to \operatorname{Pic}(A))$ and $\ker(f)$ as finite abelian groups we saw before in talk 13.

Corollary 3.3. Let $f : A \to B$ be a homomorphism of abelian varieties and \mathscr{M} a line bundle on B, $\mathscr{N} := f^*\mathscr{M}$. Then $\phi_{\mathscr{N}} : A \to A^{\vee}$ factors as

$$A \xrightarrow{f} B \xrightarrow{\phi_{\mathscr{M}}} B^{\vee} \xrightarrow{f^{\vee}} B^{\vee}$$

Thus, if f is an isogeny and \mathscr{M} ample, then \mathscr{N} is ample and $\operatorname{rank}(K(\mathscr{M})) = \operatorname{rank}(K(\mathscr{M})) \cdot \deg(f)^2$.

Proof. Just use

$$t_a^* f^* \mathscr{M} \cong f^* t_{f(a)}^* \mathscr{M}$$

for all $a \in A$, whence

$$\phi_{\mathscr{N}}(a) = f^*(t^*_{f(a)}\mathscr{M} \otimes \mathscr{M}^{-1}) = f^{\vee}(\phi_{\mathscr{M}}(f(a)))$$

for $a \in A(k)$. Using the theorem 3.3 and that $\phi_{\mathscr{M}}$ and $\phi_{\mathscr{N}}$ are isogenies if and only if \mathscr{M} and \mathscr{N} are ample respectively the second part is clear.

As the Poincaré bundle \mathscr{P} is a line bundle on $A \times A^{\vee} \cong A^{\vee} \times A$ we also obtain a morphism $\iota_A : A \to A^{\vee \vee}$.

Lemma 3.4. Let \mathscr{L} be a line bundle on A. Then $\phi_{\mathscr{L}} = \phi_{\mathscr{L}}^{\vee} \circ \iota_A$.

Proof. This is purely formal. Put $\Lambda := m^* \mathscr{L} \otimes p_1^* \mathscr{L}^{-1} \otimes p_2^* \mathscr{L}^{-1}$ on $A \times A$, which is the line bundle representing $\phi_{\mathscr{L}}$. Also, let $s : A \times A \to A \times A$ be the swap (by abuse of notation we also write this for the swap $A \times A^{\vee} \cong A^{\vee} \times A$). We write $[\mathscr{N}]$ for the morphism corresponding to a line bundle \mathscr{N} on $A \times A^{\vee}$. Then, as $s^* \Lambda \cong \Lambda$,

$$\phi_{\mathscr{L}} = [\Lambda] = [s^*\Lambda] = [s^*(1 \times \phi_{\mathscr{L}})^*\mathscr{P}] = [(\phi_{\mathscr{L}} \times 1)^* s^*\mathscr{P}] = \phi_{\mathscr{L}}^{\vee} \circ \iota_A.$$

Theorem 3.5. The morphism $\iota_A : A \to A^{\vee}$ is an isomorphism.

Proof. Since $\phi_{\mathscr{L}} = \phi_{\mathscr{L}}^{\vee} \circ \iota_A$ also for ample \mathscr{L} , ker (ι_A) is finite and thus an isogeny as dim $(A) = \dim(A^{\vee})$. Moreover,

$$\deg(\phi_{\mathscr{L}}) = \deg(\phi_{\mathscr{L}}^{\vee}) \cdot \deg(\iota_A),$$

so 3.1 shows that $\deg(\iota_A) = 1$, and ι_A is an isomorphism.

Definition 3.6. A homomorphism $f : A \to A^{\vee}$ is called *symmetric* if $f = f^{\vee} \circ \iota_A$. If $f = \phi_{\mathscr{L}}$ for some ample $\mathscr{L} \in \operatorname{Pic}(A)$, then f is an isogeny, and f is called a *polarization of degree* $\deg(f)$. If a polarization f is even an isomorphism, it is called a *principal polarization*.

4. Jacobians are principally polarized via the Θ -divisor

Let $p \in C(k)$ be a k-rational point of C, and $\mathscr{L}_{univ}^p \in \operatorname{Pic}_{C/k,p}^0(\underline{\operatorname{Pic}}_{C/k}^0)$ be the universal object of $\operatorname{Pic}_{C/k,p}^0$, cf. talks 6 and 7. We define $J \coloneqq \underline{\operatorname{Pic}}_{C/k}^0$ to be the Jacobian of C. Moreover, we denote the Abel-Jacobi map by AJ, and obtain maps

$$f^{(d)}: C^{(d)} = \underline{\operatorname{Hilb}}^d_{C/k} \xrightarrow{\operatorname{AJ}} \underline{\operatorname{Pic}}^d_{C/k} \xrightarrow{-d[p]} J$$

which are proper as both $\underline{\text{Hilb}}_{C/k}^d$, J are proper over Spec(k). In particular,

$$W^d \coloneqq f^{(d)}(C^{(d)}) \subset J$$

is closed. As $\dim(C^{(d)}) = d$, $\dim(J) = g$ and $f^{(g)}$ is surjective we have that W^d is of codimension g - d for $1 \le d \le g$. As $C^{(d)}$ is also irreducible, we conclude that

$$\Theta := W^{g-1}$$

is irreducible. In particular, Θ is a divisor. For $a \in J(k)$ we put

$$\Theta^{-1} \coloneqq (-1) \cdot \Theta, \quad \Theta_a \coloneqq \Theta + a, \quad \Theta_a^- \coloneqq \Theta^- + a$$

The following now holds.

Lemma 4.1. There is a non-empty open $U \subset J$ s.t.

- (1) the fibers of $f^{(g)}$ at any $u \in U$ are 0-dimensional, and
- (2) if a ∈ U(k) and D(a) ∈ C^(g)(k) with f^(g)(D(a)) = a (i.e., a is degree 0 line bundle and D(a) a divisor of degree g s.t. a ≅ 𝒪(D − g[p])), then D(a) = [p₁] + ... + [p_g] for unique and distinct p₁,..., p_g ∈ C(k). Moreover, for a ∈ U(k) we have f⁻¹Θ⁻_a = D(a) (as divisors), where f = f⁽¹⁾ : C → J.

Proof. As dim $(C^{(g)}) = \dim(J)$ and $f^{(g)}$ is onto, there is a nonempty open of J s.t. (1) holds, see [Sha13, p. 75, Thm. 1.25]. For the second part one simply also takes out images of subschemes of the form $\Delta \times C^{g-2} \subset C^g$,

where Δ is the diagonal, which are closed in J as $C^g \to C^{(g)} \xrightarrow{f^{(g)}} J$ is proper.

Let $a \in U(k)$, $D(a) = \sum_{i=1}^{g} [p_i]$. A point $x \in C(k)$ gets mapped to Θ_a^- by f if and only if there are $q_2, \ldots, q_g \in C(k)$ with $f(x) = -f(q_2) - \ldots - f(q_g) + a$. This implies $f^{(g)}([x] + [q_2] + \ldots + [q_g]) = a$, whence by construction of U we must have $x \in \{p_1, \ldots, p_g\}$, and thus $f^{-1}(\Theta_a^-) = n_1[p_1] + \ldots + n_g[p_g]$ for some $n_1, \ldots, n_g \ge 0$. Therefore, it suffices to show $\deg(f^{-1}(\Theta_a^-)) = g$. For this see [Mil86b, Lemma 6.7].

Fix an open $U \subset J$ as in the lemma.

Corollary 4.2. The following hold.

- (1) Let $a \in J(k)$ and $f^{(g)}(D(a)) = a$ for a divisor $D(a) \in C^{(g)}$, then $f^* \mathscr{O}(\Theta_a^-) \cong \mathscr{O}(D(a))$.
- (2) On $C \times J$ we have

$$(f \times (-1))^* \Lambda(\Theta^-) \cong \mathscr{L}_{univ}^p$$

where $\Lambda(\Theta^{-1}) \coloneqq \Lambda(\mathscr{O}(\Theta^{-})) \coloneqq m^* \mathscr{O}(\Theta^{-}) \otimes p_1^* \mathscr{O}(\Theta^{-})^{-1} \otimes p_2^* \mathscr{O}(\Theta^{-})^{-1}$ on $J \times J$.

Proof. By 4.2 part 1 holds for $u \in U(k)$. Moreover, for $a \in U(k)$ we have

$$(f\times (-1))^*m^*\mathscr{O}(\Theta^-)\big|_{C\times\{a\}}=f^*t^*_{-a}\mathscr{O}(\Theta^-)=f^*\mathscr{O}(\Theta^-_a)$$

as well as

$$\mathscr{L}^p_{\text{univ}}\Big|_{C \times \{a\}} \cong a \cong \mathscr{O}(D(a) - g[p]).$$

Thus, it suffices to show that

$$(f \times (-1))^* m^* \mathscr{O}(\Theta^-)^{-1} \otimes \mathscr{L}_{univ}^p \otimes p_1^* \mathscr{O}(g[p])$$

is trivial if restricted to $C \times \{a\}$ for all $a \in C(k)$. Since this already holds for $a \in U(k)$, this follows from 1.3. If we put a = 0, we see $f^* \mathscr{O}(\Theta^-) \cong \mathscr{O}(g[p])$. Since

put a = 0, we set $f = \mathcal{O}(O^{-1}) = \mathcal{O}(g[p])$. Since

$$(f \times (-1))^* p_1^* \mathscr{O}(\Theta^-) \big|_{C \times \{a\}} = f^* \mathscr{O}(\Theta^-)$$

we conclude

$$\mathscr{C} \coloneqq (f \times (-1))^* (m^* \mathscr{O}(\Theta^-)^{-1} \otimes p_1^* \mathscr{O}(\Theta^-) \otimes p_2^* \mathscr{O}(\Theta^-)) \otimes \mathscr{L}^p_{\mathrm{un}}$$

is still trivial if restricted to $C \times \{a\}$. As $\mathscr{L}_{\text{univ}}^p|_{\{p\} \times J}$ is trivial and f(p) = 0 also $\mathscr{K}|_{\{p\} \times J}$ is trivial. The Seesaw principle 1.4 yields part 2.

With this preparation we are now ready to proof that J is principally polarized via the Θ -divisor. Note that f(p) = 0 yields $(f \times id)^* \mathscr{P}|_{\{p\} \times J^{\vee}} \cong \mathscr{P}|_{\{0\} \times J^{\vee}}$, and

$$((f \times \mathrm{id})^* \mathscr{P})\big|_{C \times \{0\}} \cong f^*(\mathscr{P}\big|_{J \times \{0\}}) \cong f^* \mathscr{O}_J \cong \mathscr{O}_C.$$

Since $j \in J^{\vee} \mapsto \deg(C_{k(j)}, ((f \times \mathrm{id})^* \mathscr{P})|_{C \times \{j\}})$ is locally constant (cf. talk 7) $(f \times \mathrm{id})^* \mathscr{P}$ represents a function $\varphi: J^{\vee} \to J$. Here, \mathscr{P} is the Poincare bundle of J on $J \times J^{\vee}$.

Theorem 4.3. The functions $-\varphi$ and $\phi_{\mathscr{O}(\Theta)}$ are inverses.

Proof. Note that by 1.5 we have $\phi_{\mathscr{O}(\Theta)} = \phi_{(-1)^*\mathscr{O}(\Theta)} = \phi_{\mathscr{O}(\Theta^-)}$. Moreover, as $(f \times \mathrm{id})^*\mathscr{P}$ and $(1 \times \varphi)^*\mathscr{L}_{\mathrm{univ}}^p$ both represent φ , these are isomorphic. We have

$$(1 \times -\phi_{\mathscr{O}(\Theta)})^* (1 \times \varphi)^* \mathscr{L}^p_{\text{univ}} = (1 \times -\phi_{\mathscr{O}(\Theta)})^* (f \times \text{id})^* \mathscr{P} = (f \times (-1))^* (1 \times \phi_{\mathscr{O}(\Theta^-)})^* \mathscr{P}$$
$$= (f \times (-1))^* \Lambda(\Theta^-) \cong \mathscr{L}^p_{\text{univ}}$$

by 4.2 as $\Lambda(\Theta^{-}) = m^* \mathscr{O}(\Theta) \otimes p_1^* \mathscr{O}(\Theta)^{-1} \otimes p_2^* \mathscr{O}(\Theta)^{-1}$ represents $\phi_{\mathscr{O}(\Theta^{-})}$.

Thus, $\varphi \circ (-\phi_{\mathscr{O}(\Theta)}) = \mathrm{id}_J$. In particular, $\phi_{\mathscr{O}(\Theta)}$ has trivial kernel whence $\mathscr{O}(\Theta)$ is ample. Therefore, $\phi_{\mathscr{O}(\Theta)}$ is an isogeny by 1.11 (or dim $(J) = \dim(J^{\vee})$). We conclude that $\phi_{\mathscr{O}(\Theta)}$ is an isomorphism. As $\phi_{\mathscr{O}(\Theta)}$ is a group morphism, $\varphi \circ (-\phi_{\mathscr{O}(\Theta)}) = \mathrm{id}_J$ shows $\varphi \circ (-1) = -\varphi$, so indeed $-\varphi$ is inverse to $\phi_{\mathscr{O}(\Theta)}$.

It should be mentioned that choosing another k-rational point $p' \in C(k)$ in place of p simply results in a translation of the Θ -divisor by $\mathscr{O}(g[p'] - g[p])$, but this does not change the polarization as clearly $\phi_{\mathscr{L}} = \phi_{t_a^*\mathscr{L}}$ for all $a \in J(k)$ and line bundles \mathscr{L} on J.

References

- [GMss] G. van der Geer and B. Moonen. Abelian Varieties. https://page.mi.fu-berlin.de/elenalavanda/ BMoonen.pdf. Accessed on July 06, 2022. in progress.
- [Liu02] Q. Liu. Algebraic Geometry and Arithmetic Curves. Vol. 6. Oxford Graduate Texts in Mathematics. New York: Oxford University Press, 2002.
- [Mil86a] J. Milne. "Abelian Varieties". In: Arithmetic Geometry. Ed. by G. Cornell and J.H. Silverman. New York: Springer, 1986.
- [Mil86b] J. Milne. "Jacobian Varieties". In: Arithmetic Geometry. Ed. by G. Cornell and J.H. Silverman. New York: Springer, 1986.
- [Mum70] D. Mumford. Abelian Varieties. Bombay: Tata Institute of Fundamental Research, 1970.
- [Sha13] I. Shafarevich. *Basic Agebraic Geometry* 1. 3rd ed. Springer, 2013.
- [Sta22] The Stacks project authors. The Stacks project. https://stacks.math.columbia.edu. 2022.