
DUAL ABELIAN VARIETY IN CHARACTERISTIC 0

TIM KUPPEL

Abstract. The aim of this talk is to construct the dual abelian variety in characteristic 0, which is a moduli
space for translation invariant line bundles which we will therefore investigate. Moreover, we will see a few

properties of duality, and in particular that Jacobians of curves are selfdual via the Θ-divisor coming from the

Abel-Jacobi map in degree g − 1.
Throughout this talk k is an algebraically closed field, A/k an abelian variety over k and C/k a smooth

proper curve of genus g > 0. The assumption of characteristic 0 is only used in section 2.

In sections 1 and 2 we follow [Mum70], in section 3 [GMss] and in section 4 [Mil86b].

1. Pic0 of an abelian variety

Definition 1.1. For a line bundle L ∈ Pic(A) we consider

φL : A(k)→ Pic(A), a 7→ t∗aL ⊗L −1,

and define Pic0(A) := {L ∈ Pic(A) : φL = 0}.

Recall that the theorem of the square asserts t∗a+bL ⊗L ∼= t∗aL ⊗t∗bL for L ∈ Pic(A) and a, b ∈ A(k). Thus,

φL is a group homomorphism, and the image of φL is contained in Pic0(A). In particular, Pic0(A) ⊂ Pic(A)
is a subgroup.

As we want to construct an abelian variety parametrizing Pic0(A), we have to further investigate these line
bundles. The following shows that Pic0 is sensible notation, and that for an elliptic curve the moduli space we
wish to construct is just the elliptic curve itself.

Lemma 1.2. Let E/k be an elliptic curve with distinguished point e ∈ E(k). Then

Pic0(E) = {L ∈ Pic(A) : deg(L ) = 0}.

Proof. For x ∈ E(k) with nx 6= e (recall that abelian varieties are divisible) we have

nφO(e)(−x) = O(n[x]− n[e]) = O(([nx] + (n− 1)[e])− n[e]) = O([nx]− [e])

by the theorem of the square. But O([nx] − [e]) is non-trivial as else E ∼= P1 (see sheet 8, exercise 2 of our
algebraic geometry II class). Now let L ∈ Pic0(A), L ∼= O(D) for a divisor D =

∑
x∈E(k) nx[x]. Note that

φ : Pic(A)→ HomGrp(A(k),Pic0(A)),L 7→ φL is a group homomorphism, and φL = φt∗aL for all a ∈ E(k) by
the theorem of the square. Therefore, φL = deg(L )φO(e), which by the above is 0 if and only if deg(L ) = 0. �

We can also express L ∈ Pic0(A) by triviality of a certain line bundle. To this end recall the following,
which we saw in talk 11.

Proposition 1.3 ([Mil86a, Thm. 5.3]). Let V/k be a proper variety and T/k a scheme of finite type, L a line
bundle on V × T . Then

{t ∈ T : L
∣∣
V×{t} trivial}

is closed.

Moreover, we recall the seesaw principle.

Theorem 1.4 (Seesaw principle, [Mil86a, Cor. 5.2]). Let V/k be a proper variety and T/k an integral scheme
of finite type over k. Moreover, let L ,L ′ be line bundles on V × T . If L

∣∣
V×{t}

∼= L ′
∣∣
V×{t} for all t ∈ T (k)

and L
∣∣
{v}×T

∼= L ′
∣∣
{v}×T for some v ∈ V (k), then L ∼= L ′.

Lemma 1.5. Let L ∈ Pic(A). The following hold.

(i) L ∈ Pic0(A) if and only if m∗L ∼= p∗1L ⊗ p∗2L on A×A.
(ii) For morphisms f, g : S → A of schemes and L ∈ Pic0(A) we have (f+g)∗L ∼= f∗L ⊗g∗L . In particular,

n∗AL ∼= L n.

(iii) If L is of finite order, then L ∈ Pic0(A).

(iv) We have n∗AL ∼= L n2 ⊗M for some M ∈ Pic0(A).
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Proof. By the seesaw principle 1.4 M := m∗L ⊗ p∗1L −1 ⊗ p∗2L −1 is trivial if and only if M
∣∣
{0}×A

∼= OA is

trivial and for all a ∈ A(k)
M
∣∣
A×{a}

∼= t∗aL ⊗L −1

is trivial. This yields (i).
For (ii) simply pull back this isomorphism along (f, g) : S → A×A to obtain

(f + g)∗L = (f, g)∗m∗L = (f, g)∗(p∗1L ⊗ p∗2L ) = f∗L ⊗ g∗L .

For (iii) note φL (na) = nφL (a) for a ∈ A(k) and use that abelian varieties are divisible.
It remains to show (iv). We already know

n∗AL ∼= L (n2+n)/2 ⊗ (− 1)∗L(n2−n)/2 = L n2

⊗ (L ⊗ (−1)∗L −1)(n−n2)/2,

so it suffices to show L ⊗ (−1)∗L −1 ∈ Pic0(A). For a ∈ A(k)

t∗a(L ⊗ (−1)∗L −1) = t∗aL ⊗ (−1)∗(L ⊗ t∗−aL −1)⊗ (−1)∗L −1.

By 1.5 (−1)∗(L ⊗ t∗−aL −1) = L −1 ⊗ t∗−aL , whence by the theorem of the square

t∗a(L ⊗ (−1)∗L ) = t∗aL ⊗L −1 ⊗ t∗−aL ⊗ (−1)∗L −1 = L ⊗ (−1)∗L −1,

as required. �

Lemma 1.6. Let L ∈ Pic(A). Then n∗AL ∼= L n2 ⊗M for some M ∈ Pic0(A).

Proof. We already know

n∗AL ∼= L (n2+n)/2 ⊗ (− 1)∗L(n2−n)/2 = L n2

⊗ (L ⊗ (−1)∗L −1)(n−n2)/2,

so it suffices to show L ⊗ (−1)∗L −1 ∈ Pic0(A). For a ∈ A(k)

t∗a(L ⊗ (−1)∗L −1) = t∗aL ⊗ (−1)∗(L ⊗ t∗−aL −1)⊗ (−1)∗L −1.

By 1.5 (−1)∗(L ⊗ t∗−aL −1) = L −1 ⊗ t∗−aL , whence by the theorem of the square

t∗a(L ⊗ (−1)∗L ) = t∗aL ⊗L −1 ⊗ t∗−aL ⊗ (−1)∗L −1 = L ⊗ (−1)∗L −1,

as required. �

Note that the following shows that for a family of line bundles on A parametrized by a variety it suffices to
see that one of them lies in Pic0(A) in order to see that it is a family of translation invariant line bundles.

Proposition 1.7. Let S be a variety and L a line bundle on A× S. Then for all s0, s1 ∈ S(k)

Ls0 ⊗L −1
s1 ∈ Pic0(A),

where Ls = L
∣∣
A×{s} ∈ Pic(Ak(s)) for s ∈ S.

Proof. Note that p∗2(L −1
∣∣
{0}×S)s is trivial for all s ∈ S(k), so by replacing L with L ⊗ p∗2(L −1

∣∣
{0}×S) we

may assume that L
∣∣
{0}×S is trivial. Moreover, by replacing L with L ⊗ p∗1L −1

s0 we may assume that Ls0 is

trivial. We show that
M := (m× id)∗L ⊗ p∗13L

−1 ⊗ p∗23L
−1 on A×A× S

is trivial. Since Ms = m∗Ls⊗ p∗1L −1
s ⊗ p∗2L−1

s for s ∈ S(k) on X×X this suffices by 1.5. By commutativity of

A× {0} × S A×A× S

{0} × S A× S

and triviality of L
∣∣
{0}×S we have that (p∗23L

−1)
∣∣
A×{0}×S is trivial. This yields

M
∣∣
A×{0}×S = L ⊗L −1,

triviality of M
∣∣
{0}×A×S follows similarly. Moreover,

M
∣∣
A×A×{s0}

= m∗Ls0 ⊗ p∗1L −1
s0 ⊗ p

∗
2L
−1
s0

is trivial by triviality of Ls0 . The theorem of the cube yields the claim (talk 11). �

Proposition 1.8. Let L ∈ Pic0(A) be non-trivial. Then Hk(A,L ) = 0 for all k.

Proof. We proceed by induction on k. Suppose H0(A,L ) 6= 0. Thus, since L ∈ Pic0(A),

L −1 = (−1)∗L

As multiplication by -1 is an automorphism, L −1 has global sections as well. But then L ∼= OA since non-zero
global sections s ∈ H0(A,L ) and s′ ∈ H0(A,L −1) give morphisms s : OA → L , s′ : OA → L −1. Then
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s′∨ ◦ s : L → L is non-zero and thus an isomorphism by H0(A,OA) = k. But then s : OA → L is already an
isomorphism.

Now assume Hi(A,L ) = 0 for i < k and some k > 0. Let s : A → A × A, a 7→ (a, 0). As m × s = idA,
id : Hk(A,L )→ Hk(A,L ) factors as

Hk(A,L )
m∗−−→ Hk(A×A,m∗L )

s∗−−→ Hk(A,L ).

But m∗L = p∗1L ⊗ p∗2L by 1.5, so Künneth yields

Hk(A×A,m∗L ) =
∑
i+j=k

Hi(A,L )⊗Hj(A,L ) = 0.

We conclude Hk(A,L ) = 0. �

The following is our main theorem, which asserts that the k-points of the abelian variety we wish to construct
should be A(k)/K(L ) for ample L , where K(L ) = {a ∈ A(k) : φL (a)} = 0. Recall from talk 11 that in this
case K(L ) is finite. We need the following two results which are very similar to results we saw in talk 8.

Lemma 1.9 (Grauert,[Mum70, II.5, Cor. 2]). Let f : X → Y be a proper morphism of Noetherian schemes
with Y reduced and connected, and let F be a coherent sheaf on X which is flat over Y . Then, if y ∈ Y 7→
dimk(y)H

p(Xy,Fy) is constant, Rp−1f∗F ⊗OY
k(y) ∼= Hp−1(Xy,Fy) for all y ∈ Y .

With this, one also has the following.

Corollary 1.10 (Grauert,[Mum70, II.5, Cor. 4]). In the situation of 1.9 if Rkf∗F = 0 for k ≥ k0, then
Hk(Xy,Fy) = 0 for all y ∈ Y and k ≥ k0.

From now on fix an ample L ∈ Pic(A).

Theorem 1.11. The group morphism
φL : A(k)→ Pic0(A)

is surjective.

Proof. Let M ∈ Pic0(A) and assume t∗aL ⊗L −1 6∼= M for all a ∈ A(k). On A×A consider the line bundle

K := m∗L ⊗ p∗1L −1 ⊗ p∗2(L −1 ⊗M−1).

Note that for a ∈ A(k)
K
∣∣
{a}×A

∼= t∗aL ⊗L −1 ⊗M−1,

which lies in Pic0(A) and by assumption is non-trivial. Thus, by 1.8 Hi(A,K
∣∣
{a}×A) = 0 for all i, and Grauert’s

lemma 1.9 (together with Nakayama) yields Rip1,∗K = 0. We deduce

RΓ(A,Rp1,∗K ) = RΓ(A×A,K ) = 0.

Moreover, t∗aL ⊗L −1 ∼= K
∣∣
A×{a} is non-trivial for a ∈ A(k) \K(L) and K(L) is closed, whence as above by

1.9 supp(Rip2,∗K ) ⊂ K(L ) (for this, note that the above implies that the higher direct image sheaves are 0 if

we restrict to p−1
2 (A \K(L )) and use that restriction is exact). But K(L ) is finite, so

Rp2,∗K ∼= ι∗ι
−1Rp2,∗K

and ι∗ = Rι∗ as well as RΓ(K(L ),−) = Γ(K(L ),−), where ι : K(L )→ A. Therefore,

0 = RΓ(A,Rp2,∗K ) = RΓ(K(L ), ι−1Rp2,∗) = Γ((K(L ), ι−1Rp2,∗) =
⊕

x∈K(L )

(Rp2,∗)x.

We deduce Rp2,∗K = 0, and 1.10 yields Hi(A,K
∣∣
A×{a}) = 0 for all a ∈ A. But K

∣∣
A×{0} is trivial, and thus

has global sections; a contradiction. �

2. The dual abelian variety in characteristic 0

Theorem 1.11 suggests that our moduli space of Pic0 on k-points should be A(k)/K(L ). As we hope for an
abelian variety, K(L ) ought to be the k-points of a closed group subscheme of A. But in characteristic 0 group
schemes are smooth by a theorem of Cartier [Sta22, Tag 047N], in particular reduced, and we have our natural
candidate: K(L ) with its reduced subscheme structure.

We remark that in arbitrary characteristic this does not work, but one has to see that there is a closed group
subscheme K(L ) with functor of points K(L )(S) = {a ∈ A(S) : t∗aLS

∼= LS on X × S}.

Definition 2.1. An abelian variety A∨ together with a line bundle P on A×A∨ called Poincaré bundle is the
dual abelian variety of A if

(1) P
∣∣
{0}×A∨

∼= OA∨ and P
∣∣
A×{a} ∈ Pic0(Ak(A)) for all a ∈ A∨, and

https://stacks.math.columbia.edu/tag/047N
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(2) for all schemes T/k and line bundles M on A× T with M
∣∣
{0}×T

∼= OT and MA×{t} ∈ Pic0(Ak(t)) for

all t ∈ T there is a unique morphism f : T → A∨ s.t. (1× f)∗P ∼= M .

In other words, A∨ is an abelian variety representing the functor

(Sch/k)opp 7→ Sets, T 7→ {M ∈ Pic(A× T ) : M
∣∣
{0}×T

∼= OT , M
∣∣
A×{t} ∈ Pic0(Ak(t)) for all t ∈ T}.

Note that for an elliptic curve E/k this functor is simply Pic0
E/k,0.

As noted above in characteristic 0 we already have a candidate for A∨, and it remains to to construct the
Poincaré bundle. For the rest of this section assume char(k) = 0 and put A∨ := A/K(L ), where K(L ) has
the reduced subscheme structure.

In order to obtain the Poincaré bundle we use descent of line bundles as discussed in talk 13.

Theorem 2.2. Let G be a finite group scheme acting freely on A, i.e., G × A → A × A, (g, a) 7→ (g.a, a) is a
closed immersion. Denote the natural map X → X/G by π. Then

QCoh(X/G)→ {F ∈ QCoh(X) G− equivariant},F 7→ π∗F

is an equivalence of categories under which locally free sheaves of some rank correspond to locally free sheaves
of the same rank.

Recall that a G-equivariant sheaf on A is simply a sheaf F on A together with isomorphisms λg : g∗F → F
for all g ∈ G s.t. for all g, h ∈ G

(g + h)∗F F

g∗F

λg+h

g∗λg
λh

commutes.
We want π = φL , which thus has to correspond to Λ := m∗L ⊗ p∗1L ⊗ p∗2L −1 as Λ

∣∣
{a}×A = t∗aL ⊗L −1

for all a ∈ A(k). Hence, we have to give Λ on A× A a {0} ×K(L )-equivariant structure in order to obtain a
line bundle P on A×A∨ = (A×A)/({0} ×K(L )) with π∗P = Λ.

Lemma 2.3. There exists an {0} ×K(L )-equivariant structure on Λ.

Proof. First, note that
t∗(0,a)Λ = t∗(0,a)Λ

∼= m∗t∗aL ⊗ p∗1L −1 ⊗ p∗2t∗aL −1 ∼= Λ

for all a ∈ K(L ). Thus, isomorphisms λa : t∗(0,a)Λ
∼= Λ for a ∈ K(L ) exist, but we need

(1)

t∗(0,a+b)Λ Λ

t∗(0,a)Λ

λa+b

t∗(0,a)λh
λa

to commute for a, b ∈ K(L ). Fix an isomorphism Λ
∣∣
{0}×A

∼= OA. As res : k× = H0(A × A,O×A×A)
∼−−→

H0({0} × A,O×{0}×A) = k×, we can simply require the λa to be the unique isomorphisms t∗(0,a)Λ
∼−−→ Λ which

after restriction to {0} ×A are

t∗a : t∗aOA
∼= t∗aL

∣∣
{0}×A = (t∗(0,a)L )

∣∣
{0}×A

∼−−→ L
∣∣
{0}×A

∼= OA.

Since ta ◦ tb = ta+b the commutativity of 1 after restriction to {0} ×A is clear, and we obtain a line bundle P
on A×A∨ with π∗P ∼= Λ. �

Theorem 2.4. The dual abelian variety of A is A∨ and P is the Poincaré bundle.

Proof. We outline the proof only for normal varieties S/k, for the general case including arbitrary characteristic
see [Mum70, III.13].

Let M be a line bundle on A × S s.t. M
∣∣
{0}×S is trivial and M

∣∣
A×{s} ∈ Pic0(Ak(s)) for all s ∈ S. On

A× S ×A∨ consider
F := p∗12M ⊗ p∗13P

−1.

Note that
F
∣∣
A×{(s,b)}

∼= Ms ⊗P−1
b

for s ∈ S(k), b ∈ A∨. Moreover, consider

Γ := {(s, b) ∈ S ×A∨ : F
∣∣
A×{(s,b)} trivial},

which is closed in S ×A∨ by 1.4 (of course we equip Γ with its reduced subscheme structure). For (s, b) ∈ Γ(k)
we have Ms

∼= Pb. By construction of A∨ we have A∨(k) = A(k)/K(L ), so for every s ∈ S(k) there is a
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unique b ∈ A∨(k) with Ms
∼= Pb. Note that this in particular implies that the morphism f we will obtain is

unique with (1× f)∗P ∼= M . We conclude that on k-points the projection

p1 : Γ→ S, (s, b) 7→ s

is a bijection. Therefore, k(A∨)/k(Γ) is a field extension of separable degree 1, and by char(k) = 0 we even
get A∨(k) = Γ(k) [Sha13, p. 142, Thm. 2.29]. The following theorem shows that p1 : Γ → S is even an

isomorphism, and f : S ∼= Γ
p2−−→ A∨ fulfils M ∼= (1× f)P by the seesaw principle 1.4 as both

M
∣∣
{0}×S

∼= Os ∼= f∗(P
∣∣
{0}×A∨) ∼= ((1× f)∗P)

∣∣
{0}×S

by triviality of P
∣∣
{0}×A∨ and and for all s ∈ S(k)

Ms
∼= Pf(s)

∼= ((1× f)∗P)
∣∣
A×{f(s)}.

�

Theorem 2.5 (Zariski’s main theorem, [Liu02, 4, Cor. 4.6]). Let f : X → S be a quasi-finite and birational
morphism of varieties with S normal. Then f is an open immersion.

3. Dual morphisms

We now show that duality of abelian varieties is a ”good” duality in the sense that A ∼= A∨∨. For this, we
need Cartier duals, which are the scheme version of character groups.

Theorem 3.1 ([Mum70, III.14]). Let G/k be a finite group scheme. Then there is a finite group scheme GD

of the same rank as G which represents

(Sch/k)opp 7→ Sets, T 7→ HomGrpSch/T (G× T,Gm × T ).

With these, the following important theorem holds.

Theorem 3.2 ([Mum70, III.15, Thm. 1]). Let f : A → B be an isogeny. Then f∨ : B∨ → A∨ is an isogeny
and naturally ker(f∨) ∼= ker(f)D.

Note that this is just the scheme version of the duality between ker(f∗ : Pic(B) → Pic(A)) and ker(f) as
finite abelian groups we saw before in talk 13.

Corollary 3.3. Let f : A→ B be a homomorphism of abelian varieties and M a line bundle on B, N := f∗M .
Then φN : A→ A∨ factors as

A
f−−→ B

φM−−→ B∨
f∨−−→ B∨.

Thus, if f is an isogeny and M ample, then N is ample and rank(K(N )) = rank(K(M )) · deg(f)2.

Proof. Just use
t∗af
∗M ∼= f∗t∗f(a)M

for all a ∈ A, whence
φN (a) = f∗(t∗f(a)M ⊗M−1) = f∨(φM (f(a)))

for a ∈ A(k). Using the theorem 3.3 and that φM and φN are isogenies if and only if M and N are ample
respectively the second part is clear. �

As the Poincaré bundle P is a line bundle on A×A∨ ∼= A∨ ×A we also obtain a morphism ιA : A→ A∨∨.

Lemma 3.4. Let L be a line bundle on A. Then φL = φ∨L ◦ ιA.

Proof. This is purely formal. Put Λ := m∗L ⊗p∗1L −1⊗p∗2L −1 on A×A, which is the line bundle representing
φL . Also, let s : A× A→ A× A be the swap (by abuse of notation we also write this for the swap A× A∨ ∼=
A∨ ×A). We write [N ] for the morphism corresponding to a line bundle N on A×A∨. Then, as s∗Λ ∼= Λ,

φL = [Λ] = [s∗Λ] = [s∗(1× φL )∗P] = [(φL × 1)∗s∗P] = φ∨L ◦ ιA.
�

Theorem 3.5. The morphism ιA : A→ A∨ is an isomorphism.

Proof. Since φL = φ∨L ◦ ιA also for ample L , ker(ιA) is finite and thus an isogeny as dim(A) = dim(A∨).
Moreover,

deg(φL ) = deg(φ∨L ) · deg(ιA),

so 3.1 shows that deg(ιA) = 1, and ιA is an isomorphism. �

Definition 3.6. A homomorphism f : A→ A∨ is called symmetric if f = f∨ ◦ ιA. If f = φL for some ample
L ∈ Pic(A), then f is an isogeny, and f is called a polarization of degree deg(f). If a polarization f is even an
isomorphism, it is called a principal polarization.
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4. Jacobians are principally polarized via the Θ-divisor

Let p ∈ C(k) be a k-rational point of C, and L p
univ ∈ Pic0

C/k,p(Pic0
C/k) be the universal object of Pic0

C/k,p,

cf. talks 6 and 7. We define J := Pic0
C/k to be the Jacobian of C. Moreover, we denote the Abel-Jacobi map

by AJ, and obtain maps

f (d) : C(d) = HilbdC/k
AJ−−→ PicdC/k

−d[p]−−−−→ J,

which are proper as both HilbdC/k, J are proper over Spec(k). In particular,

W d := f (d)(C(d)) ⊂ J
is closed. As dim(C(d)) = d, dim(J) = g and f (g) is surjective we have that W d is of codimension g − d for
1 ≤ d ≤ g. As C(d) is also irreducible, we conclude that

Θ := W g−1

is irreducible. In particular, Θ is a divisor. For a ∈ J(k) we put

Θ−1 := (−1) ·Θ, Θa := Θ + a, Θ−a := Θ− + a.

The following now holds.

Lemma 4.1. There is a non-empty open U ⊂ J s.t.

(1) the fibers of f (g) at any u ∈ U are 0-dimensional, and
(2) if a ∈ U(k) and D(a) ∈ C(g)(k) with f (g)(D(a)) = a (i.e., a is degree 0 line bundle and D(a) a divisor

of degree g s.t. a ∼= O(D−g[p])), then D(a) = [p1]+ . . .+[pg] for unique and distinct p1, . . . , pg ∈ C(k).

Moreover, for a ∈ U(k) we have f−1Θ−a = D(a) (as divisors), where f = f (1) : C → J .

Proof. As dim(C(g)) = dim(J) and f (g) is onto, there is a nonempty open of J s.t. (1) holds, see [Sha13, p. 75,
Thm. 1.25]. For the second part one simply also takes out images of subschemes of the form ∆× Cg−2 ⊂ Cg,

where ∆ is the diagonal, which are closed in J as Cg → C(g) f(g)

−−−→ J is proper.
Let a ∈ U(k), D(a) =

∑g
i=1[pi]. A point x ∈ C(k) gets mapped to Θ−a by f if and only if there are

q2, . . . , qg ∈ C(k) with f(x) = −f(q2) − . . . − f(qg) + a. This implies f (g)([x] + [q2] + . . . + [qg]) = a, whence
by construction of U we must have x ∈ {p1, . . . , pg}, and thus f−1(Θ−a ) = n1[p1] + . . . + ng[pg] for some
n1, . . . , ng ≥ 0. Therefore, it suffices to show deg(f−1(Θ−a )) = g. For this see [Mil86b, Lemma 6.7]. �

Fix an open U ⊂ J as in the lemma.

Corollary 4.2. The following hold.

(1) Let a ∈ J(k) and f (g)(D(a)) = a for a divisor D(a) ∈ C(g), then f∗O(Θ−a ) ∼= O(D(a)).
(2) On C × J we have

(f × (−1))∗Λ(Θ−) ∼= L p
univ,

where Λ(Θ−1) := Λ(O(Θ−)) := m∗O(Θ−)⊗ p∗1O(Θ−)−1 ⊗ p∗2O(Θ−)−1 on J × J .

Proof. By 4.2 part 1 holds for u ∈ U(k). Moreover, for a ∈ U(k) we have

(f × (−1))∗m∗O(Θ−)
∣∣
C×{a} = f∗t∗−aO(Θ−) = f∗O(Θ−a )

as well as
L p

univ

∣∣
C×{a}

∼= a ∼= O(D(a)− g[p]).

Thus, it suffices to show that

(f × (−1))∗m∗O(Θ−)−1 ⊗L p
univ ⊗ p

∗
1O(g[p])

is trivial if restricted to C × {a} for all a ∈ C(k). Since this already holds for a ∈ U(k), this follows from 1.3.
If we put a = 0, we see f∗O(Θ−) ∼= O(g[p]). Since

(f × (−1))∗p∗1O(Θ−)
∣∣
C×{a} = f∗O(Θ−)

we conclude
K := (f × (−1))∗(m∗O(Θ−)−1 ⊗ p∗1O(Θ−)⊗ p∗2O(Θ−))⊗L p

univ

is still trivial if restricted to C×{a}. As L p
univ

∣∣
{p}×J is trivial and f(p) = 0 also K

∣∣
{p}×J is trivial. The Seesaw

principle 1.4 yields part 2. �

With this preparation we are now ready to proof that J is principally polarized via the Θ-divisor. Note that
f(p) = 0 yields (f × id)∗P

∣∣
{p}×J∨

∼= P
∣∣
{0}×J∨ , and

((f × id)∗P)
∣∣
C×{0}

∼= f∗(P
∣∣
J×{0})

∼= f∗OJ ∼= OC .

Since j ∈ J∨ 7→ deg(Ck(j), ((f × id)∗P)
∣∣
C×{j}) is locally constant (cf. talk 7) (f × id)∗P represents a function

ϕ : J∨ → J . Here, P is the Poincare bundle of J on J × J∨.
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Theorem 4.3. The functions −ϕ and φO(Θ) are inverses.

Proof. Note that by 1.5 we have φO(Θ) = φ(−1)∗O(Θ) = φO(Θ−). Moreover, as (f × id)∗P and (1 × ϕ)∗L p
univ

both represent ϕ, these are isomorphic. We have

(1×−φO(Θ))
∗(1× ϕ)∗L p

univ =(1×−φO(Θ))
∗(f × id)∗P = (f × (−1))∗(1× φO(Θ−))

∗P

=(f × (−1))∗Λ(Θ−) ∼= L p
univ

by 4.2 as Λ(Θ−) = m∗O(Θ)⊗ p∗1O(Θ)−1 ⊗ p∗2O(Θ)−1 represents φO(Θ−).
Thus, ϕ ◦ (−φO(Θ)) = idJ . In particular, φO(Θ) has trivial kernel whence O(Θ) is ample. Therefore, φO(Θ)

is an isogeny by 1.11 (or dim(J) = dim(J∨)). We conclude that φO(Θ) is an isomorphism. As φO(Θ) is a group
morphism, ϕ ◦ (−φO(Θ)) = idJ shows ϕ ◦ (−1) = −ϕ, so indeed −ϕ is inverse to φO(Θ). �

It should be mentioned that choosing another k-rational point p′ ∈ C(k) in place of p simply results in a
translation of the Θ-divisor by O(g[p′]− g[p]), but this does not change the polarization as clearly φL = φt∗aL

for all a ∈ J(k) and line bundles L on J .
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