DUAL ABELIAN VARIETY IN CHARACTERISTIC 0

TIM KUPPEL

Abstract

The aim of this talk is to construct the dual abelian variety in characteristic 0 , which is a moduli space for translation invariant line bundles which we will therefore investigate. Moreover, we will see a few properties of duality, and in particular that Jacobians of curves are selfdual via the Θ-divisor coming from the Abel-Jacobi map in degree $g-1$.

Throughout this talk k is an algebraically closed field, A / k an abelian variety over k and C / k a smooth proper curve of genus $g>0$. The assumption of characteristic 0 is only used in section 2 .

In sections 1 and 2 we follow Mum70, in section 3 GMss and in section 4 Mil86b.

1. Pic^{0} OF AN ABELIAN VARIETY

Definition 1.1. For a line bundle $\mathscr{L} \in \operatorname{Pic}(A)$ we consider

$$
\phi_{\mathscr{L}}: A(k) \rightarrow \operatorname{Pic}(A), a \mapsto t_{a}^{*} \mathscr{L} \otimes \mathscr{L}^{-1}
$$

and define $\operatorname{Pic}^{0}(A):=\{\mathscr{L} \in \operatorname{Pic}(A): \phi \mathscr{L}=0\}$.
Recall that the theorem of the square asserts $t_{a+b}^{*} \mathscr{L} \otimes \mathscr{L} \cong t_{a}^{*} \mathscr{L} \otimes t_{b}^{*} \mathscr{L}$ for $\mathscr{L} \in \operatorname{Pic}(A)$ and $a, b \in A(k)$. Thus, $\phi_{\mathscr{L}}$ is a group homomorphism, and the image of $\phi_{\mathscr{L}}$ is contained in $\operatorname{Pic}^{0}(A)$. In particular, $\operatorname{Pic}^{0}(A) \subset \operatorname{Pic}(A)$ is a subgroup.

As we want to construct an abelian variety parametrizing $\operatorname{Pic}^{0}(A)$, we have to further investigate these line bundles. The following shows that Pic^{0} is sensible notation, and that for an elliptic curve the moduli space we wish to construct is just the elliptic curve itself.

Lemma 1.2. Let E / k be an elliptic curve with distinguished point $e \in E(k)$. Then

$$
\operatorname{Pic}^{0}(E)=\{\mathscr{L} \in \operatorname{Pic}(A): \operatorname{deg}(\mathscr{L})=0\}
$$

Proof. For $x \in E(k)$ with $n x \neq e$ (recall that abelian varieties are divisible) we have

$$
n \phi_{\mathscr{O}(e)}(-x)=\mathscr{O}(n[x]-n[e])=\mathscr{O}(([n x]+(n-1)[e])-n[e])=\mathscr{O}([n x]-[e])
$$

by the theorem of the square. But $\mathscr{O}([n x]-[e])$ is non-trivial as else $E \cong \mathbb{P}^{1}$ (see sheet 8 , exercise 2 of our algebraic geometry II class). Now let $\mathscr{L} \in \operatorname{Pic}^{0}(A), \mathscr{L} \cong \mathscr{O}(D)$ for a divisor $D=\sum_{x \in E(k)} n_{x}[x]$. Note that $\phi: \operatorname{Pic}(A) \rightarrow \operatorname{Hom}_{\operatorname{Grp}}\left(A(k), \operatorname{Pic}^{0}(A)\right), \mathscr{L} \mapsto \phi_{\mathscr{L}}$ is a group homomorphism, and $\phi_{\mathscr{L}}=\phi_{t_{a}^{*} \mathscr{L}}$ for all $a \in E(k)$ by the theorem of the square. Therefore, $\phi_{\mathscr{L}}=\operatorname{deg}(\mathscr{L}) \phi_{\mathscr{O}(e)}$, which by the above is 0 if and only if $\operatorname{deg}(\mathscr{L})=0$.

We can also express $\mathscr{L} \in \operatorname{Pic}^{0}(A)$ by triviality of a certain line bundle. To this end recall the following, which we saw in talk 11.

Proposition 1.3 (Mil86a, Thm. 5.3]). Let V / k be a proper variety and T / k a scheme of finite type, \mathscr{L} a line bundle on $V \times T$. Then

$$
\left\{t \in T:\left.\mathscr{L}\right|_{V \times\{t\}} \text { trivial }\right\}
$$

is closed.
Moreover, we recall the seesaw principle.
Theorem 1.4 (Seesaw principle, Mil86a, Cor. 5.2]). Let V / k be a proper variety and T / k an integral scheme of finite type over k. Moreover, let $\mathscr{L}, \mathscr{L}^{\prime}$ be line bundles on $V \times T$. If $\left.\left.\mathscr{L}\right|_{V \times\{t\}} \cong \mathscr{L}^{\prime}\right|_{V \times\{t\}}$ for all $t \in T(k)$ and $\left.\left.\mathscr{L}\right|_{\{v\} \times T} \cong \mathscr{L}^{\prime}\right|_{\{v\} \times T}$ for some $v \in V(k)$, then $\mathscr{L} \cong \mathscr{L}^{\prime}$.

Lemma 1.5. Let $\mathscr{L} \in \operatorname{Pic}(A)$. The following hold.
(i) $\mathscr{L} \in \operatorname{Pic}^{0}(A)$ if and only if $m^{*} \mathscr{L} \cong p_{1}^{*} \mathscr{L} \otimes p_{2}^{*} \mathscr{L}$ on $A \times A$.
(ii) For morphisms $f, g: S \rightarrow A$ of schemes and $\mathscr{L} \in \operatorname{Pic}^{0}(A)$ we have $(f+g)^{*} \mathscr{L} \cong f^{*} \mathscr{L} \otimes g^{*} \mathscr{L}$. In particular, $n_{A}^{*} \mathscr{L} \cong \mathscr{L}^{n}$.
(iii) If \mathscr{L} is of finite order, then $\mathscr{L} \in \operatorname{Pic}^{0}(A)$.
(iv) We have $n_{A}^{*} \mathscr{L} \cong \mathscr{L}^{n^{2}} \otimes \mathscr{M}$ for some $\mathscr{M} \in \operatorname{Pic}^{0}(A)$.

Proof. By the seesaw principle $1.4 \mathscr{M}:=m^{*} \mathscr{L} \otimes p_{1}^{*} \mathscr{L}^{-1} \otimes p_{2}^{*} \mathscr{L}^{-1}$ is trivial if and only if $\left.\mathscr{M}\right|_{\{0\} \times A} \cong \mathscr{O}_{A}$ is trivial and for all $a \in A(k)$

$$
\left.\mathscr{M}\right|_{A \times\{a\}} \cong t_{a}^{*} \mathscr{L} \otimes \mathscr{L}^{-1}
$$

is trivial. This yields (i).
For (ii) simply pull back this isomorphism along $(f, g): S \rightarrow A \times A$ to obtain

$$
(f+g)^{*} \mathscr{L}=(f, g)^{*} m^{*} \mathscr{L}=(f, g)^{*}\left(p_{1}^{*} \mathscr{L} \otimes p_{2}^{*} \mathscr{L}\right)=f^{*} \mathscr{L} \otimes g^{*} \mathscr{L}
$$

For (iii) note $\phi_{\mathscr{L}}(n a)=n \phi_{\mathscr{L}}(a)$ for $a \in A(k)$ and use that abelian varieties are divisible.
It remains to show (iv). We already know

$$
n_{A}^{*} \mathscr{L} \cong \mathscr{L}^{\left(n^{2}+n\right) / 2} \otimes(-1)^{*} L^{\left(n^{2}-n\right) / 2}=\mathscr{L}^{n^{2}} \otimes\left(\mathscr{L} \otimes(-1)^{*} \mathscr{L}^{-1}\right)^{\left(n-n^{2}\right) / 2}
$$

so it suffices to show $\mathscr{L} \otimes(-1)^{*} \mathscr{L}^{-1} \in \operatorname{Pic}^{0}(A)$. For $a \in A(k)$

$$
t_{a}^{*}\left(\mathscr{L} \otimes(-1)^{*} \mathscr{L}^{-1}\right)=t_{a}^{*} \mathscr{L} \otimes(-1)^{*}\left(\mathscr{L} \otimes t_{-a}^{*} \mathscr{L}^{-1}\right) \otimes(-1)^{*} \mathscr{L}^{-1}
$$

By $1.5(-1)^{*}\left(\mathscr{L} \otimes t_{-a}^{*} \mathscr{L}^{-1}\right)=\mathscr{L}^{-1} \otimes t_{-a}^{*} \mathscr{L}$, whence by the theorem of the square

$$
t_{a}^{*}\left(\mathscr{L} \otimes(-1)^{*} \mathscr{L}\right)=t_{a}^{*} \mathscr{L} \otimes \mathscr{L}^{-1} \otimes t_{-a}^{*} \mathscr{L} \otimes(-1)^{*} \mathscr{L}^{-1}=\mathscr{L} \otimes(-1)^{*} \mathscr{L}^{-1}
$$

as required.
Lemma 1.6. Let $\mathscr{L} \in \operatorname{Pic}(A)$. Then $n_{A}^{*} \mathscr{L} \cong \mathscr{L}^{n^{2}} \otimes \mathscr{M}$ for some $\mathscr{M} \in \operatorname{Pic}^{0}(A)$.
Proof. We already know

$$
n_{A}^{*} \mathscr{L} \cong \mathscr{L}^{\left(n^{2}+n\right) / 2} \otimes(-1)^{*} L^{\left(n^{2}-n\right) / 2}=\mathscr{L}^{n^{2}} \otimes\left(\mathscr{L} \otimes(-1)^{*} \mathscr{L}^{-1}\right)^{\left(n-n^{2}\right) / 2}
$$

so it suffices to show $\mathscr{L} \otimes(-1)^{*} \mathscr{L}^{-1} \in \operatorname{Pic}^{0}(A)$. For $a \in A(k)$

$$
t_{a}^{*}\left(\mathscr{L} \otimes(-1)^{*} \mathscr{L}^{-1}\right)=t_{a}^{*} \mathscr{L} \otimes(-1)^{*}\left(\mathscr{L} \otimes t_{-a}^{*} \mathscr{L}^{-1}\right) \otimes(-1)^{*} \mathscr{L}^{-1}
$$

By $1.5(-1)^{*}\left(\mathscr{L} \otimes t_{-a}^{*} \mathscr{L}^{-1}\right)=\mathscr{L}^{-1} \otimes t_{-a}^{*} \mathscr{L}$, whence by the theorem of the square

$$
t_{a}^{*}\left(\mathscr{L} \otimes(-1)^{*} \mathscr{L}\right)=t_{a}^{*} \mathscr{L} \otimes \mathscr{L}^{-1} \otimes t_{-a}^{*} \mathscr{L} \otimes(-1)^{*} \mathscr{L}^{-1}=\mathscr{L} \otimes(-1)^{*} \mathscr{L}^{-1}
$$

as required.
Note that the following shows that for a family of line bundles on A parametrized by a variety it suffices to see that one of them lies in $\operatorname{Pic}^{0}(A)$ in order to see that it is a family of translation invariant line bundles.
Proposition 1.7. Let S be a variety and \mathscr{L} a line bundle on $A \times S$. Then for all $s_{0}, s_{1} \in S(k)$

$$
\mathscr{L}_{s_{0}} \otimes \mathscr{L}_{s_{1}}^{-1} \in \operatorname{Pic}^{0}(A)
$$

where $\mathscr{L}_{s}=\left.\mathscr{L}\right|_{A \times\{s\}} \in \operatorname{Pic}\left(A_{k(s)}\right)$ for $s \in S$.
Proof. Note that $p_{2}^{*}\left(\left.\mathscr{L}^{-1}\right|_{\{0\} \times S}\right)_{s}$ is trivial for all $s \in S(k)$, so by replacing \mathscr{L} with $\mathscr{L} \otimes p_{2}^{*}\left(\left.\mathscr{L}^{-1}\right|_{\{0\} \times S}\right)$ we may assume that $\left.\mathscr{L}\right|_{\{0\} \times S}$ is trivial. Moreover, by replacing \mathscr{L} with $\mathscr{L} \otimes p_{1}^{*} \mathscr{L}_{s_{0}}^{-1}$ we may assume that $\mathscr{L}_{s_{0}}$ is trivial. We show that

$$
\mathscr{M}:=(m \times \mathrm{id})^{*} \mathscr{L} \otimes p_{13}^{*} \mathscr{L}^{-1} \otimes p_{23}^{*} \mathscr{L}^{-1} \text { on } A \times A \times S
$$

is trivial. Since $\mathscr{M}_{s}=m^{*} \mathscr{L}_{s} \otimes p_{1}^{*} \mathscr{L}_{s}^{-1} \otimes p_{2}^{*} L_{s}^{-1}$ for $s \in S(k)$ on $X \times X$ this suffices by 1.5 . By commutativity of

and triviality of $\left.\mathscr{L}\right|_{\{0\} \times S}$ we have that $\left.\left(p_{23}^{*} \mathscr{L}^{-1}\right)\right|_{A \times\{0\} \times S}$ is trivial. This yields

$$
\left.\mathscr{M}\right|_{A \times\{0\} \times S}=\mathscr{L} \otimes \mathscr{L}^{-1}
$$

triviality of $\left.\mathscr{M}\right|_{\{0\} \times A \times S}$ follows similarly. Moreover,

$$
\left.\mathscr{M}\right|_{A \times A \times\left\{s_{0}\right\}}=m^{*} \mathscr{L}_{s_{0}} \otimes p_{1}^{*} \mathscr{L}_{s_{0}}^{-1} \otimes p_{2}^{*} \mathscr{L}_{s_{0}}^{-1}
$$

is trivial by triviality of $\mathscr{L}_{s_{0}}$. The theorem of the cube yields the claim (talk 11).
Proposition 1.8. Let $\mathscr{L} \in \operatorname{Pic}^{0}(A)$ be non-trivial. Then $H^{k}(A, \mathscr{L})=0$ for all k.
Proof. We proceed by induction on k. Suppose $H^{0}(A, \mathscr{L}) \neq 0$. Thus, since $\mathscr{L} \in \operatorname{Pic}^{0}(A)$,

$$
\mathscr{L}^{-1}=(-1)^{*} \mathscr{L}
$$

As multiplication by -1 is an automorphism, \mathscr{L}^{-1} has global sections as well. But then $\mathscr{L} \cong \mathscr{O}_{A}$ since non-zero global sections $s \in H^{0}(A, \mathscr{L})$ and $s^{\prime} \in H^{0}\left(A, \mathscr{L}^{-1}\right)$ give morphisms $s: \mathscr{O}_{A} \rightarrow \mathscr{L}, s^{\prime}: \mathscr{O}_{A} \rightarrow \mathscr{L}^{-1}$. Then
$s^{\wedge \vee} \circ s: \mathscr{L} \rightarrow \mathscr{L}$ is non-zero and thus an isomorphism by $H^{0}\left(A, \mathscr{O}_{A}\right)=k$. But then $s: \mathscr{O}_{A} \rightarrow \mathscr{L}$ is already an isomorphism.

Now assume $H^{i}(A, \mathscr{L})=0$ for $i<k$ and some $k>0$. Let $s: A \rightarrow A \times A, a \mapsto(a, 0)$. As $m \times s=\operatorname{id}_{A}$, id : $H^{k}(A, \mathscr{L}) \rightarrow H^{k}(A, \mathscr{L})$ factors as

$$
H^{k}(A, \mathscr{L}) \xrightarrow{m^{*}} H^{k}\left(A \times A, m^{*} \mathscr{L}\right) \xrightarrow{s^{*}} H^{k}(A, \mathscr{L})
$$

But $m^{*} \mathscr{L}=p_{1}^{*} \mathscr{L} \otimes p_{2}^{*} \mathscr{L}$ by 1.5, so Künneth yields

$$
H^{k}\left(A \times A, m^{*} \mathscr{L}\right)=\sum_{i+j=k} H^{i}(A, \mathscr{L}) \otimes H^{j}(A, \mathscr{L})=0 .
$$

We conclude $H^{k}(A, \mathscr{L})=0$.
The following is our main theorem, which asserts that the k-points of the abelian variety we wish to construct should be $A(k) / K(\mathscr{L})$ for ample \mathscr{L}, where $K(\mathscr{L})=\left\{a \in A(k): \phi_{\mathscr{L}}(a)\right\}=0$. Recall from talk 11 that in this case $K(\mathscr{L})$ is finite. We need the following two results which are very similar to results we saw in talk 8.

Lemma 1.9 (Grauert, Mum70, II.5, Cor. 2]). Let $f: X \rightarrow Y$ be a proper morphism of Noetherian schemes with Y reduced and connected, and let \mathscr{F} be a coherent sheaf on X which is flat over Y. Then, if $y \in Y \mapsto$ $\operatorname{dim}_{k(y)} H^{p}\left(X_{y}, \mathscr{F}_{y}\right)$ is constant, $R^{p-1} f_{*} \mathscr{F} \otimes_{\mathscr{O}_{Y}} k(y) \cong H^{p-1}\left(X_{y}, \mathscr{F}_{y}\right)$ for all $y \in Y$.

With this, one also has the following.
Corollary 1.10 (Grauert, Mum70, II.5, Cor. 4]). In the situation of 1.9 if $R^{k} f_{*} \mathscr{F}=0$ for $k \geq k_{0}$, then $H^{k}\left(X_{y}, \mathscr{F}_{y}\right)=0$ for all $y \in Y$ and $k \geq k_{0}$.

From now on fix an ample $\mathscr{L} \in \operatorname{Pic}(A)$.
Theorem 1.11. The group morphism

$$
\phi_{\mathscr{L}}: A(k) \rightarrow \operatorname{Pic}^{0}(A)
$$

is surjective.
Proof. Let $\mathscr{M} \in \operatorname{Pic}^{0}(A)$ and assume $t_{a}^{*} \mathscr{L} \otimes \mathscr{L}^{-1} \neq \mathscr{M}$ for all $a \in A(k)$. On $A \times A$ consider the line bundle

$$
\mathscr{K}:=m^{*} \mathscr{L} \otimes p_{1}^{*} \mathscr{L}^{-1} \otimes p_{2}^{*}\left(\mathscr{L}^{-1} \otimes \mathscr{M}^{-1}\right)
$$

Note that for $a \in A(k)$

$$
\left.\mathscr{K}\right|_{\{a\} \times A} \cong t_{a}^{*} \mathscr{L} \otimes \mathscr{L}^{-1} \otimes \mathscr{M}^{-1}
$$

which lies in $\operatorname{Pic}^{0}(A)$ and by assumption is non-trivial. Thus, by $1.8 H^{i}\left(A,\left.\mathscr{K}\right|_{\{a\} \times A}\right)=0$ for all i, and Grauert's lemma 1.9 (together with Nakayama) yields $R^{i} p_{1, *} \mathscr{K}=0$. We deduce

$$
R \Gamma\left(A, R p_{1, *} \mathscr{K}\right)=R \Gamma(A \times A, \mathscr{K})=0 .
$$

Moreover, $\left.t_{a}^{*} \mathscr{L} \otimes \mathscr{L}^{-1} \cong \mathscr{K}\right|_{A \times\{a\}}$ is non-trivial for $a \in A(k) \backslash K(L)$ and $K(L)$ is closed, whence as above by $1.9 \operatorname{supp}\left(R^{i} p_{2, *} \mathscr{K}\right) \subset K(\mathscr{L})$ (for this, note that the above implies that the higher direct image sheaves are 0 if we restrict to $p_{2}^{-1}(A \backslash K(\mathscr{L}))$ and use that restriction is exact). But $K(\mathscr{L})$ is finite, so

$$
R p_{2, *} \mathscr{K} \cong \iota_{*} l^{-1} R p_{2, *} \mathscr{K}
$$

and $\iota_{*}=R \iota_{*}$ as well as $R \Gamma(K(\mathscr{L}),-)=\Gamma(K(\mathscr{L}),-)$, where $\iota: K(\mathscr{L}) \rightarrow A$. Therefore,

$$
0=R \Gamma\left(A, R p_{2, *} \mathscr{K}\right)=R \Gamma\left(K(\mathscr{L}), \iota^{-1} R p_{2, *}\right)=\Gamma\left(\left(K(\mathscr{L}), \iota^{-1} R p_{2, *}\right)=\bigoplus_{x \in K(\mathscr{L})}\left(R p_{2, *}\right)_{x}\right.
$$

We deduce $R p_{2, *} \mathscr{K}=0$, and 1.10 yields $H^{i}\left(A,\left.\mathscr{K}\right|_{A \times\{a\}}\right)=0$ for all $a \in A$. But $\left.\mathscr{K}\right|_{A \times\{0\}}$ is trivial, and thus has global sections; a contradiction.

2. The dual abelian variety in characteristic 0

Theorem 1.11 suggests that our moduli space of Pic^{0} on k-points should be $A(k) / K(\mathscr{L})$. As we hope for an abelian variety, $K(\mathscr{L})$ ought to be the k-points of a closed group subscheme of A. But in characteristic 0 group schemes are smooth by a theorem of Cartier Sta22, Tag 047N], in particular reduced, and we have our natural candidate: $K(\mathscr{L})$ with its reduced subscheme structure.

We remark that in arbitrary characteristic this does not work, but one has to see that there is a closed group subscheme $K(\mathscr{L})$ with functor of points $K(\mathscr{L})(S)=\left\{a \in A(S): t_{a}^{*} \mathscr{L}_{S} \cong \mathscr{L}_{S}\right.$ on $\left.X \times S\right\}$.
Definition 2.1. An abelian variety A^{\vee} together with a line bundle \mathscr{P} on $A \times A^{\vee}$ called Poincaré bundle is the dual abelian variety of A if
(1) $\left.\mathscr{P}\right|_{\{0\} \times A^{\vee}} \cong \mathscr{O}_{A^{\vee}}$ and $\left.\mathscr{P}\right|_{A \times\{a\}} \in \operatorname{Pic}^{0}\left(A_{k(A)}\right)$ for all $a \in A^{\vee}$, and
(2) for all schemes T / k and line bundles \mathscr{M} on $A \times T$ with $\left.\mathscr{M}\right|_{\{0\} \times T} \cong \mathscr{O}_{T}$ and $\mathscr{M}_{A \times\{t\}} \in \operatorname{Pic}^{0}\left(A_{k(t)}\right)$ for all $t \in T$ there is a unique morphism $f: T \rightarrow A^{\vee}$ s.t. $(1 \times f)^{*} \mathscr{P} \cong \mathscr{M}$.
In other words, A^{\vee} is an abelian variety representing the functor

$$
(\mathrm{Sch} / k)^{\mathrm{opp}} \mapsto \operatorname{Sets}, T \mapsto\left\{\mathscr{M} \in \operatorname{Pic}(A \times T):\left.\mathscr{M}\right|_{\{0\} \times T} \cong \mathscr{O}_{T},\left.\mathscr{M}\right|_{A \times\{t\}} \in \operatorname{Pic}^{0}\left(A_{k(t)}\right) \text { for all } t \in T\right\}
$$

Note that for an elliptic curve E / k this functor is simply $\operatorname{Pic}_{E / k, 0}^{0}$.
As noted above in characteristic 0 we already have a candidate for A^{\vee}, and it remains to to construct the Poincaré bundle. For the rest of this section assume $\operatorname{char}(k)=0$ and put $A^{\vee}:=A / K(\mathscr{L})$, where $K(\mathscr{L})$ has the reduced subscheme structure.

In order to obtain the Poincaré bundle we use descent of line bundles as discussed in talk 13.
Theorem 2.2. Let G be a finite group scheme acting freely on A, i.e., $G \times A \rightarrow A \times A,(g, a) \mapsto(g . a, a)$ is a closed immersion. Denote the natural map $X \rightarrow X / G$ by π. Then

$$
\mathrm{QCoh}(\mathrm{X} / \mathrm{G}) \rightarrow\{\mathscr{F} \in \mathrm{QCoh}(\mathrm{X}) G-\text { equivariant }\}, \mathscr{F} \mapsto \pi^{*} \mathscr{F}
$$

is an equivalence of categories under which locally free sheaves of some rank correspond to locally free sheaves of the same rank.

Recall that a G-equivariant sheaf on A is simply a sheaf \mathscr{F} on A together with isomorphisms $\lambda_{g}: g^{*} \mathscr{F} \rightarrow \mathscr{F}$ for all $g \in G$ s.t. for all $g, h \in G$

commutes.
We want $\pi=\phi \mathscr{L}$, which thus has to correspond to $\Lambda:=m^{*} \mathscr{L} \otimes p_{1}^{*} \mathscr{L} \otimes p_{2}^{*} \mathscr{L}^{-1}$ as $\left.\Lambda\right|_{\{a\} \times A}=t_{a}^{*} \mathscr{L} \otimes \mathscr{L}^{-1}$ for all $a \in A(k)$. Hence, we have to give Λ on $A \times A$ a $\{0\} \times K(\mathscr{L})$-equivariant structure in order to obtain a line bundle \mathscr{P} on $A \times A^{\vee}=(A \times A) /(\{0\} \times K(\mathscr{L}))$ with $\pi^{*} \mathscr{P}=\Lambda$.
Lemma 2.3. There exists an $\{0\} \times K(\mathscr{L})$-equivariant structure on Λ.
Proof. First, note that

$$
t_{(0, a)}^{*} \Lambda=t_{(0, a)}^{*} \Lambda \cong m^{*} t_{a}^{*} \mathscr{L} \otimes p_{1}^{*} \mathscr{L}^{-1} \otimes p_{2}^{*} t_{a}^{*} \mathscr{L}^{-1} \cong \Lambda
$$

for all $a \in K(\mathscr{L})$. Thus, isomorphisms $\lambda_{a}: t_{(0, a)}^{*} \Lambda \cong \Lambda$ for $a \in K(\mathscr{L})$ exist, but we need

$$
\begin{equation*}
t_{(0, a+b)}^{*} \Lambda \underbrace{\lambda_{t_{(0, a)}^{*}}^{\lambda_{a+b}} \Lambda}_{t_{(0, a)}^{*} \lambda_{h}} \Lambda \tag{1}
\end{equation*}
$$

to commute for $a, b \in K(\mathscr{L})$. Fix an isomorphism $\left.\Lambda\right|_{\{0\} \times A} \cong \mathscr{O}_{A}$. As res : $k^{\times}=H^{0}\left(A \times A, \mathscr{O}_{A \times A}^{\times}\right) \xrightarrow{\sim}$ $H^{0}\left(\{0\} \times A, \mathscr{O}_{\{0\} \times A}^{\times}\right)=k^{\times}$, we can simply require the λ_{a} to be the unique isomorphisms $t_{(0, a)}^{*} \Lambda \xrightarrow{\sim} \Lambda$ which after restriction to $\{0\} \times A$ are

$$
t_{a}^{*}:\left.t_{a}^{*} \mathscr{O}_{A} \cong t_{a}^{*} \mathscr{L}\right|_{\{0\} \times A}=\left.\left.\left(t_{(0, a)}^{*} \mathscr{L}\right)\right|_{\{0\} \times A} \xrightarrow{\sim} \mathscr{L}\right|_{\{0\} \times A} \cong \mathscr{O}_{A}
$$

Since $t_{a} \circ t_{b}=t_{a+b}$ the commutativity of 1 after restriction to $\{0\} \times A$ is clear, and we obtain a line bundle \mathscr{P} on $A \times A^{\vee}$ with $\pi^{*} \mathscr{P} \cong \Lambda$.

Theorem 2.4. The dual abelian variety of A is A^{\vee} and \mathscr{P} is the Poincaré bundle.
Proof. We outline the proof only for normal varieties S / k, for the general case including arbitrary characteristic see Mum70, III.13].

Let \mathscr{M} be a line bundle on $A \times S$ s.t. $\left.\mathscr{M}\right|_{\{0\} \times S}$ is trivial and $\left.\mathscr{M}\right|_{A \times\{s\}} \in \operatorname{Pic}^{0}\left(A_{k(s)}\right)$ for all $s \in S$. On $A \times S \times A^{\vee}$ consider

$$
\mathscr{F}:=p_{12}^{*} \mathscr{M} \otimes p_{13}^{*} \mathscr{P}^{-1} .
$$

Note that

$$
\left.\mathscr{F}\right|_{A \times\{(s, b)\}} \cong \mathscr{M}_{s} \otimes \mathscr{P}_{b}^{-1}
$$

for $s \in S(k), b \in A^{\vee}$. Moreover, consider

$$
\Gamma:=\left\{(s, b) \in S \times A^{\vee}:\left.\mathscr{F}\right|_{A \times\{(s, b)\}} \text { trivial }\right\}
$$

which is closed in $S \times A^{\vee}$ by 1.4 (of course we equip Γ with its reduced subscheme structure). For $(s, b) \in \Gamma(k)$ we have $\mathscr{M}_{s} \cong \mathscr{P}_{b}$. By construction of A^{\vee} we have $A^{\vee}(k)=A(k) / K(\mathscr{L})$, so for every $s \in S(k)$ there is a
unique $b \in A^{\vee}(k)$ with $\mathscr{M}_{s} \cong \mathscr{P}_{b}$. Note that this in particular implies that the morphism f we will obtain is unique with $(1 \times f)^{*} \mathscr{P} \cong \mathscr{M}$. We conclude that on k-points the projection

$$
p_{1}: \Gamma \rightarrow S,(s, b) \mapsto s
$$

is a bijection. Therefore, $k\left(A^{\vee}\right) / k(\Gamma)$ is a field extension of separable degree 1 , and by $\operatorname{char}(k)=0$ we even get $A^{\vee}(k)=\Gamma(k)$ Sha13, p. 142, Thm. 2.29]. The following theorem shows that $p_{1}: \Gamma \rightarrow S$ is even an isomorphism, and $f: S \cong \Gamma \xrightarrow{p_{2}} A^{\vee}$ fulfils $\mathscr{M} \cong(1 \times f) \mathscr{P}$ by the seesaw principle 1.4 as both

$$
\left.\left.\mathscr{M}\right|_{\{0\} \times S} \cong \mathscr{O}_{s} \cong f^{*}\left(\left.\mathscr{P}\right|_{\{0\} \times A^{\vee}}\right) \cong\left((1 \times f)^{*} \mathscr{P}\right)\right|_{\{0\} \times S}
$$

by triviality of $\left.\mathscr{P}\right|_{\{0\} \times A^{\vee}}$ and and for all $s \in S(k)$

$$
\left.\mathscr{M}_{s} \cong \mathscr{P}_{f(s)} \cong\left((1 \times f)^{*} \mathscr{P}\right)\right|_{A \times\{f(s)\}}
$$

Theorem 2.5 (Zariski's main theorem, Liu02, 4, Cor. 4.6]). Let $f: X \rightarrow S$ be a quasi-finite and birational morphism of varieties with S normal. Then f is an open immersion.

3. Dual morphisms

We now show that duality of abelian varieties is a "good" duality in the sense that $A \cong A^{\vee \vee}$. For this, we need Cartier duals, which are the scheme version of character groups.

Theorem 3.1 (Mum70, III.14]). Let G / k be a finite group scheme. Then there is a finite group scheme G^{D} of the same rank as G which represents

$$
(\mathrm{Sch} / k)^{\mathrm{opp}} \mapsto \operatorname{Sets}, T \mapsto \operatorname{Hom}_{\operatorname{GrpSch} / T}\left(G \times T, \mathbb{G}_{m} \times T\right)
$$

With these, the following important theorem holds.
Theorem 3.2 (Mum70, III.15, Thm. 1]). Let $f: A \rightarrow B$ be an isogeny. Then $f^{\vee}: B^{\vee} \rightarrow A^{\vee}$ is an isogeny and naturally $\operatorname{ker}\left(f^{\vee}\right) \cong \operatorname{ker}(f)^{D}$.

Note that this is just the scheme version of the duality between $\operatorname{ker}\left(f^{*}: \operatorname{Pic}(B) \rightarrow \operatorname{Pic}(A)\right)$ and $\operatorname{ker}(f)$ as finite abelian groups we saw before in talk 13.

Corollary 3.3. Let $f: A \rightarrow B$ be a homomorphism of abelian varieties and \mathscr{M} a line bundle on $B, \mathscr{N}:=f^{*} \mathscr{M}$. Then $\phi_{\mathscr{N}}: A \rightarrow A^{\vee}$ factors as

$$
A \xrightarrow{f} B \xrightarrow{\phi_{\mathscr{M}}} B^{\vee} \xrightarrow{f^{\vee}} B^{\vee}
$$

Thus, if f is an isogeny and \mathscr{M} ample, then \mathscr{N} is ample and $\operatorname{rank}(K(\mathscr{N}))=\operatorname{rank}(K(\mathscr{M})) \cdot \operatorname{deg}(f)^{2}$.
Proof. Just use

$$
t_{a}^{*} f^{*} \mathscr{M} \cong f^{*} t_{f(a)}^{*} \mathscr{M}
$$

for all $a \in A$, whence

$$
\phi_{\mathscr{N}}(a)=f^{*}\left(t_{f(a)}^{*} \mathscr{M} \otimes \mathscr{M}^{-1}\right)=f^{\vee}\left(\phi_{\mathscr{M}}(f(a))\right)
$$

for $a \in A(k)$. Using the theorem 3.3 and that $\phi_{\mathscr{M}}$ and $\phi_{\mathscr{N}}$ are isogenies if and only if \mathscr{M} and \mathscr{N} are ample respectively the second part is clear.

As the Poincaré bundle \mathscr{P} is a line bundle on $A \times A^{\vee} \cong A^{\vee} \times A$ we also obtain a morphism $\iota_{A}: A \rightarrow A^{\vee \vee}$.
Lemma 3.4. Let \mathscr{L} be a line bundle on A. Then $\phi_{\mathscr{L}}=\phi_{\mathscr{L}}^{\vee} \circ \iota_{A}$.
Proof. This is purely formal. Put $\Lambda:=m^{*} \mathscr{L} \otimes p_{1}^{*} \mathscr{L}^{-1} \otimes p_{2}^{*} \mathscr{L}^{-1}$ on $A \times A$, which is the line bundle representing $\phi_{\mathscr{L}}$. Also, let $s: A \times A \rightarrow A \times A$ be the swap (by abuse of notation we also write this for the swap $A \times A^{\vee} \cong$ $A^{\vee} \times A$). We write $[\mathscr{N}]$ for the morphism corresponding to a line bundle \mathscr{N} on $A \times A^{\vee}$. Then, as $s^{*} \Lambda \cong \Lambda$,

$$
\phi_{\mathscr{L}}=[\Lambda]=\left[s^{*} \Lambda\right]=\left[s^{*}(1 \times \phi \mathscr{L})^{*} \mathscr{P}\right]=\left[\left(\phi_{\mathscr{L}} \times 1\right)^{*} s^{*} \mathscr{P}\right]=\phi_{\mathscr{L}}^{\vee} \circ \iota_{A} .
$$

Theorem 3.5. The morphism $\iota_{A}: A \rightarrow A^{\vee}$ is an isomorphism.
Proof. Since $\phi_{\mathscr{L}}=\phi_{\mathscr{L}}^{\vee} \circ \iota_{A}$ also for ample $\mathscr{L}, \operatorname{ker}\left(\iota_{A}\right)$ is finite and thus an isogeny as $\operatorname{dim}(A)=\operatorname{dim}\left(A^{\vee}\right)$. Moreover,

$$
\operatorname{deg}\left(\phi_{\mathscr{L}}\right)=\operatorname{deg}\left(\phi_{\mathscr{L}}^{\vee}\right) \cdot \operatorname{deg}\left(\iota_{A}\right),
$$

so 3.1 shows that $\operatorname{deg}\left(\iota_{A}\right)=1$, and ι_{A} is an isomorphism.
Definition 3.6. A homomorphism $f: A \rightarrow A^{\vee}$ is called symmetric if $f=f^{\vee} \circ \iota_{A}$. If $f=\phi_{\mathscr{L}}$ for some ample $\mathscr{L} \in \operatorname{Pic}(A)$, then f is an isogeny, and f is called a polarization of degree $\operatorname{deg}(f)$. If a polarization f is even an isomorphism, it is called a principal polarization.

4. Jacobians are principally polarized via the Θ-divisor

Let $p \in C(k)$ be a k-rational point of C, and $\mathscr{L}_{\text {univ }}^{p} \in \operatorname{Pic}_{C / k, p}^{0}\left(\operatorname{Pic}_{C / k}^{0}\right)$ be the universal object of $\mathrm{Pic}_{C / k, p}^{0}$, cf. talks 6 and 7 . We define $J:=\underline{\operatorname{Pic}}_{C / k}^{0}$ to be the Jacobian of C. Moreover, we denote the Abel-Jacobi map by AJ, and obtain maps

$$
f^{(d)}: C^{(d)}=\underline{\operatorname{Hilb}}_{C / k}^{d} \xrightarrow{\mathrm{AJ}} \underline{\mathrm{Pic}}_{C / k}^{d} \xrightarrow{-d[p]} J,
$$

which are proper as both $\underline{\operatorname{Hilb}}_{C / k}^{d}, J$ are proper over $\operatorname{Spec}(k)$. In particular,

$$
W^{d}:=f^{(d)}\left(C^{(d)}\right) \subset J
$$

is closed. As $\operatorname{dim}\left(C^{(d)}\right)=d, \operatorname{dim}(J)=g$ and $f^{(g)}$ is surjective we have that W^{d} is of codimension $g-d$ for $1 \leq d \leq g$. As $C^{(d)}$ is also irreducible, we conclude that

$$
\Theta:=W^{g-1}
$$

is irreducible. In particular, Θ is a divisor. For $a \in J(k)$ we put

$$
\Theta^{-1}:=(-1) \cdot \Theta, \quad \Theta_{a}:=\Theta+a, \quad \Theta_{a}^{-}:=\Theta^{-}+a
$$

The following now holds.
Lemma 4.1. There is a non-empty open $U \subset J$ s.t.
(1) the fibers of $f^{(g)}$ at any $u \in U$ are 0-dimensional, and
(2) if $a \in U(k)$ and $D(a) \in C^{(g)}(k)$ with $f^{(g)}(D(a))=a$ (i.e., a is degree 0 line bundle and $D(a)$ a divisor of degree g s.t. $a \cong \mathscr{O}(D-g[p]))$, then $D(a)=\left[p_{1}\right]+\ldots+\left[p_{g}\right]$ for unique and distinct $p_{1}, \ldots, p_{g} \in C(k)$.
Moreover, for $a \in U(k)$ we have $f^{-1} \Theta_{a}^{-}=D(a)$ (as divisors), where $f=f^{(1)}: C \rightarrow J$.
Proof. As $\operatorname{dim}\left(C^{(g)}\right)=\operatorname{dim}(J)$ and $f^{(g)}$ is onto, there is a nonempty open of J s.t. (1) holds, see Sha13 p. 75, Thm. 1.25]. For the second part one simply also takes out images of subschemes of the form $\Delta \times C^{g-2} \subset C^{g}$, where Δ is the diagonal, which are closed in J as $C^{g} \rightarrow C^{(g)} \xrightarrow{f^{(g)}} J$ is proper.

Let $a \in U(k), D(a)=\sum_{i=1}^{g}\left[p_{i}\right]$. A point $x \in C(k)$ gets mapped to Θ_{a}^{-}by f if and only if there are $q_{2}, \ldots, q_{g} \in C(k)$ with $f(x)=-f\left(q_{2}\right)-\ldots-f\left(q_{g}\right)+a$. This implies $f^{(g)}\left([x]+\left[q_{2}\right]+\ldots+\left[q_{g}\right]\right)=a$, whence by construction of U we must have $x \in\left\{p_{1}, \ldots, p_{g}\right\}$, and thus $f^{-1}\left(\Theta_{a}^{-}\right)=n_{1}\left[p_{1}\right]+\ldots+n_{g}\left[p_{g}\right]$ for some $n_{1}, \ldots, n_{g} \geq 0$. Therefore, it suffices to show $\operatorname{deg}\left(f^{-1}\left(\Theta_{a}^{-}\right)\right)=g$. For this see Mil86b, Lemma 6.7].

Fix an open $U \subset J$ as in the lemma.
Corollary 4.2. The following hold.
(1) Let $a \in J(k)$ and $f^{(g)}(D(a))=a$ for a divisor $D(a) \in C^{(g)}$, then $f^{*} \mathscr{O}\left(\Theta_{a}^{-}\right) \cong \mathscr{O}(D(a))$.
(2) On $C \times J$ we have

$$
(f \times(-1))^{*} \Lambda\left(\Theta^{-}\right) \cong \mathscr{L}_{\text {univ }}^{p},
$$

where $\Lambda\left(\Theta^{-1}\right):=\Lambda\left(\mathscr{O}\left(\Theta^{-}\right)\right):=m^{*} \mathscr{O}\left(\Theta^{-}\right) \otimes p_{1}^{*} \mathscr{O}\left(\Theta^{-}\right)^{-1} \otimes p_{2}^{*} \mathscr{O}\left(\Theta^{-}\right)^{-1}$ on $J \times J$.
Proof. By 4.2 part 1 holds for $u \in U(k)$. Moreover, for $a \in U(k)$ we have

$$
\left.(f \times(-1))^{*} m^{*} \mathscr{O}\left(\Theta^{-}\right)\right|_{C \times\{a\}}=f^{*} t_{-a}^{*} \mathscr{O}\left(\Theta^{-}\right)=f^{*} \mathscr{O}\left(\Theta_{a}^{-}\right)
$$

as well as

$$
\left.\mathscr{L}_{\mathrm{univ}}^{p}\right|_{C \times\{a\}} \cong a \cong \mathscr{O}(D(a)-g[p]) .
$$

Thus, it suffices to show that

$$
(f \times(-1))^{*} m^{*} \mathscr{O}\left(\Theta^{-}\right)^{-1} \otimes \mathscr{L}_{\text {univ }}^{p} \otimes p_{1}^{*} \mathscr{O}(g[p])
$$

is trivial if restricted to $C \times\{a\}$ for all $a \in C(k)$. Since this already holds for $a \in U(k)$, this follows from 1.3 .
If we put $a=0$, we see $f^{*} \mathscr{O}\left(\Theta^{-}\right) \cong \mathscr{O}(g[p])$. Since

$$
\left.(f \times(-1))^{*} p_{1}^{*} \mathscr{O}\left(\Theta^{-}\right)\right|_{C \times\{a\}}=f^{*} \mathscr{O}\left(\Theta^{-}\right)
$$

we conclude

$$
\mathscr{K}:=(f \times(-1))^{*}\left(m^{*} \mathscr{O}\left(\Theta^{-}\right)^{-1} \otimes p_{1}^{*} \mathscr{O}\left(\Theta^{-}\right) \otimes p_{2}^{*} \mathscr{O}\left(\Theta^{-}\right)\right) \otimes \mathscr{L}_{\mathrm{univ}}^{p}
$$

is still trivial if restricted to $C \times\{a\}$. As $\left.\mathscr{L}_{\text {univ }}^{p}\right|_{\{p\} \times J}$ is trivial and $f(p)=0$ also $\left.\mathscr{K}\right|_{\{p\} \times J}$ is trivial. The Seesaw principle 1.4 yields part 2.

With this preparation we are now ready to proof that J is principally polarized via the Θ-divisor. Note that $f(p)=0$ yields $\left.\left.(f \times \mathrm{id})^{*} \mathscr{P}\right|_{\{p\} \times J^{\vee}} \cong \mathscr{P}\right|_{\{0\} \times J^{\vee}}$, and

$$
\left.\left((f \times \mathrm{id})^{*} \mathscr{P}\right)\right|_{C \times\{0\}} \cong f^{*}\left(\left.\mathscr{P}\right|_{J \times\{0\}}\right) \cong f^{*} \mathscr{O}_{J} \cong \mathscr{O}_{C}
$$

Since $j \in J^{\vee} \mapsto \operatorname{deg}\left(C_{k(j)},\left.\left((f \times \mathrm{id})^{*} \mathscr{P}\right)\right|_{C \times\{j\}}\right)$ is locally constant $($ cf. talk 7$)(f \times \mathrm{id})^{*} \mathscr{P}$ represents a function $\varphi: J^{\vee} \rightarrow J$. Here, \mathscr{P} is the Poincare bundle of J on $J \times J^{\vee}$.

Theorem 4.3. The functions $-\varphi$ and $\phi_{\mathscr{O}(\Theta)}$ are inverses.
Proof. Note that by 1.5 we have $\phi_{\mathscr{O}(\Theta)}=\phi_{(-1)^{*} \mathscr{O}(\Theta)}=\phi_{\mathscr{O}\left(\Theta^{-}\right)}$. Moreover, as $(f \times \mathrm{id})^{*} \mathscr{P}$ and $(1 \times \varphi)^{*} \mathscr{L}_{\text {univ }}^{p}$ both represent φ, these are isomorphic. We have

$$
\begin{aligned}
\left(1 \times-\phi_{\mathscr{O}(\Theta)}\right)^{*}(1 \times \varphi)^{*} \mathscr{L}_{\text {univ }}^{p} & =\left(1 \times-\phi_{\mathscr{O}(\Theta)}\right)^{*}(f \times \mathrm{id})^{*} \mathscr{P}=(f \times(-1))^{*}\left(1 \times \phi_{\mathscr{O}\left(\Theta^{-}\right)}\right)^{*} \mathscr{P} \\
& =(f \times(-1))^{*} \Lambda\left(\Theta^{-}\right) \cong \mathscr{L}_{\text {univ }}^{p}
\end{aligned}
$$

by 4.2 as $\Lambda\left(\Theta^{-}\right)=m^{*} \mathscr{O}(\Theta) \otimes p_{1}^{*} \mathscr{O}(\Theta)^{-1} \otimes p_{2}^{*} \mathscr{O}(\Theta)^{-1}$ represents $\phi_{\mathscr{O}\left(\Theta^{-}\right)}$.
Thus, $\varphi \circ\left(-\phi_{\mathscr{O}(\Theta)}\right)=\mathrm{id}_{J}$. In particular, $\phi_{\mathscr{O}(\Theta)}$ has trivial kernel whence $\mathscr{O}(\Theta)$ is ample. Therefore, $\phi_{\mathscr{O}(\Theta)}$ is an isogeny by 1.11 (or $\left.\operatorname{dim}(J)=\operatorname{dim}\left(J^{\vee}\right)\right)$. We conclude that $\phi_{\mathscr{O}(\Theta)}$ is an isomorphism. As $\phi_{\mathscr{O}(\Theta)}$ is a group morphism, $\varphi \circ\left(-\phi_{\mathscr{O}(\Theta)}\right)=\mathrm{id}_{J}$ shows $\varphi \circ(-1)=-\varphi$, so indeed $-\varphi$ is inverse to $\phi_{\mathscr{O}(\Theta)}$.

It should be mentioned that choosing another k-rational point $p^{\prime} \in C(k)$ in place of p simply results in a translation of the Θ-divisor by $\mathscr{O}\left(g\left[p^{\prime}\right]-g[p]\right)$, but this does not change the polarization as clearly $\phi_{\mathscr{L}}=\phi_{t_{a}^{*}} \mathscr{L}$ for all $a \in J(k)$ and line bundles \mathscr{L} on J.

References

[GMss] G. van der Geer and B. Moonen. Abelian Varieties. https://page.mi.fu-berlin.de/elenalavanda, BMoonen.pdf. Accessed on July 06, 2022. in progress.
[Liu02] Q. Liu. Algebraic Geometry and Arithmetic Curves. Vol. 6. Oxford Graduate Texts in Mathematics. New York: Oxford University Press, 2002.
[Mil86a] J. Milne. "Abelian Varieties". In: Arithmetic Geometry. Ed. by G. Cornell and J.H. Silverman. New York: Springer, 1986.
[Mil86b] J. Milne. "Jacobian Varieties". In: Arithmetic Geometry. Ed. by G. Cornell and J.H. Silverman. New York: Springer, 1986.
[Mum70] D. Mumford. Abelian Varieties. Bombay: Tata Institute of Fundamental Research, 1970.
[Sha13] I. Shafarevich. Basic Agebraic Geometry 1. 3rd ed. Springer, 2013.
[Sta22] The Stacks project authors. The Stacks project. https://stacks.math.columbia.edu. 2022.

